首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study develops a frequency-domain method for modelling general transient linear-elastic dynamic problems using the semi-analytical scaled boundary finite element method (SBFEM). This approach first uses the newly-developed analytical Frobenius solution to the governing equilibrium equation system in the frequency domain to calculate complex frequency-response functions (CFRFs). This is followed by a fast Fourier transform (FFT) of the transient load and a subsequent inverse FFT of the CFRFs to obtain time histories of structural responses. A set of wave propagation and structural dynamics problems, subjected to various load forms such as Heaviside step load, triangular blast load and ramped wind load, are modelled using the new approach. Due to the semi-analytical nature of the SBFEM, each problem is successfully modelled using a very small number of degrees of freedom. The numerical results agree very well with the analytical solutions and the results from detailed finite element analyses.  相似文献   

2.
The fracture behavior of particulate composite materials when subjected to dynamic loading has been a great concern for many industrial applications as these materials are particularly susceptible to impact loading conditions. As a result, many numerical and experimental techniques have been developed to deal with this class of problems. In this work, the fracture behavior of particulate composites under impact loading conditions is numerically studied via the two most important fracture parameters: dynamic stress intensity factors (DSIFs) and dynamic T-stress (DTS), and the results are compared with the experimental data obtained in Refs. [1,2]. Here, micromechanics models (self-consistent, Mori–Tanaka, …) or experimental techniques need to be employed first to determine the effective material properties of particulate composites. Then, the symmetric-Galerkin boundary element method for elastodynamics in the Fourier-space frequency domain is used in conjunction with displacement correlation technique to evaluate the DSIFs and stress correlation technique to determine the DTS. To obtain transient responses of the fracture parameters, fast Fourier transform (FFT) and inverse FFT are subsequently used to convert the DSIFs and DTS from the frequency domain to the time domain. Test examples involving free–free beams made of particulate composites are considered in this study. The numerical results are found to agree very well with the experimental ones.  相似文献   

3.
This paper presents an extension of the recently-developed finite element–scaled boundary finite element (FEM–SBFEM) coupled method to model multiple crack propagation in concrete. The concrete bulk and fracture process zones are modelled using SBFEM and nonlinear cohesive interface finite elements (CIEs), respectively. The CIEs are automatically inserted into the SBFEM mesh as the cracks propagate. The algorithm previously devised for single crack propagation is augmented to model problems with multiple cracks and to allow cracks to initiate in an un-cracked SBFEM mesh. It also addresses crack propagation from one subdomain into another, as a result of partitioning a coarse SBFEM mesh, required for some mixed–mode problems. Each crack in the SBFEM mesh propagates when the sign of the Mode-I stress intensity factor at the crack tip turns positive from negative. Its propagation angle is determined using linear elastic fracture mechanics criteria. Three concrete beams involving multiple crack propagation are modelled. The predicted crack propagation patterns and load–displacement curves are in good agreement with data reported in literature.  相似文献   

4.
This study presents the development of the scaled boundary finite element method (SBFEM) to simulate elastoplastic stress wave propagation problems subjected to transient dynamic loadings. Material nonlinearity is considered by first reformulating the SBFEM to obtain an explicit form of shape functions for polygons with an arbitrary number of sides. The material constitutive matrix and the residual stress fields are then determined as analytical polynomial functions in the scaled boundary coordinates through a local least squares fit to evaluate the elastoplastic stiffness matrix and the residual load vector semianalytically. The treatment of the inertial force within the solution of the nonlinear system of equations is also presented within the SBFEM framework. The nonlinear equation system is solved using the unconditionally stable Newmark time integration algorithm. The proposed formulation is validated using several benchmark numerical examples.  相似文献   

5.
We apply a combination of the transient scaled boundary finite element method (SBFEM) and quadtree‐based discretization to model dynamic problems at high frequencies. We demonstrate that the current formulation of the SBFEM for dynamics tends to require more degrees of freedom than a corresponding spectral element discretization when dealing with smooth problems on regular domains. Thus, we improve the efficiency of the SBFEM by proposing a novel approach to reduce the number of auxiliary variables for transient analyses. Based on this improved SBFEM, we present a modified meshing procedure, which creates a quadtree mesh purely based on the geometry and allows arbitrary sizes and orders of elements, as well as an arbitrary number of different materials. The discretization of each subdomain is created automatically based on material parameters and the highest frequency of interest. The transition between regions of different properties is straightforward when using the SBFEM. The proposed approach is applied to image‐based analysis with a particular focus on geological models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
扩展有限元法利用了非网格重剖分技术,但需要基于裂尖解析解构造复杂的插值基函数,计算精度受网格疏密和插值基函数等因素影响。比例边界有限元法则在求解无限域和裂尖奇异性问题优势明显,两者衔接于有限元法理论内,可建立一种结合二者优势的断裂耦合数值模型。该文从虚功原理出发,利用位移协调与力平衡机制,提出了一种断裂计算的新方法X-SBFEM,达到了扩展有限元模拟裂纹主体、比例边界有限元模拟裂尖的目的。在数值算例中,通过边裂纹和混合型裂纹的应力强度因子计算,并与理论解对比,验证了该方法的准确性和有效性。  相似文献   

7.
This paper is dedicated to simulation of dynamic analysis of fixed cracks in orthotropic media using an extended finite element method. This work is in fact an extension to dynamic problems of the recently developed orthotropic extended finite element method for fracture analysis of composites. In this method, the Heaviside and near-tip enrichment functions are used in the framework of the partition of unity for modeling crack discontinuity and crack-tip singularities within the classical finite element method. In this procedure, elements that include a crack are not required to conform to crack edges. Therefore, mesh generation can be performed without any need to comply to crack edges and the method is capable of modeling the crack propagation without any remeshing. To determine the fracture properties, mixed-mode dynamic stress intensity factors (DSIFs) are evaluated by means of domain separation integral (J-integral) method. Results of the proposed method are compared with other available analytical and computational results.  相似文献   

8.
庞林  林皋  钟红 《工程力学》2016,33(7):7-14
该文将比例边界等几何方法(SBIGA)应用在断裂力学中,并就应力强度因子(SIFs)计算精度和收敛速度与传统比例边界有限元(SBFEM)进行了比较。与SBFEM不同,SBIGA采用非均匀有理B样条(NURBS)作为造型和离散的工具。主要包括了以下两个特点:一方面,有限元模型可直接继承于CAD系统,即节约划分网格的时间也避免了几何近似。另一方面,因为不需要进一步与CAD系统数据交换就可以保型细分,二维问题中自适应分析策略的实施十分方便。算例表明,SBIGA方法可以给出较SBFEM更为精确的结果和更快的收敛速度。其原因不仅得益于对曲边几何形状的精确描述,还来源于NURBS高阶的连续性。  相似文献   

9.
An automatic crack propagation modelling technique using polygon elements is presented. A simple algorithm to generate a polygon mesh from a Delaunay triangulated mesh is implemented. The polygon element formulation is constructed from the scaled boundary finite element method (SBFEM), treating each polygon as a SBFEM subdomain and is very efficient in modelling singular stress fields in the vicinity of cracks. Stress intensity factors are computed directly from their definitions without any nodal enrichment functions. An automatic remeshing algorithm capable of handling any n‐sided polygon is developed to accommodate crack propagation. The algorithm is simple yet flexible because remeshing involves minimal changes to the global mesh and is limited to only polygons on the crack paths. The efficiency of the polygon SBFEM in computing accurate stress intensity factors is first demonstrated for a problem with a stationary crack. Four crack propagation benchmarks are then modelled to validate the developed technique and demonstrate its salient features. The predicted crack paths show good agreement with experimental observations and numerical simulations reported in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
比例边界有限元法作为一种高精度的半解析数值求解方法,特别适合于求解无限域与应力奇异性等问题,多边形比例边界单元在模拟裂纹扩展过程、处理局部网格重剖分等方面相较于有限单元法具有明显优势。目前,比例边界有限元法更多关注的是线弹性问题的求解,而非线性比例边界单元的研究则处于起步阶段。该文将高效的隔离非线性有限元法用于比例边界单元的非线性分析,提出了一种高效的隔离非线性比例边界有限元法。该方法认为每个边界线单元覆盖的区域为相互独立的扇形子单元,其形函数以及应变-位移矩阵可通过半解析的弹性解获得;每个扇形区的非线性应变场通过设置非线性应变插值点来表达,引入非线性本构关系即可实现多边形比例边界单元高效非线性分析。多边形比例边界单元的刚度通过集成每个扇形子单元的刚度获取,扇形子单元的刚度可采用高斯积分方案进行求解,其精度保持不变。由于引入了较多的非线性应变插值点,舒尔补矩阵维数较大,该文采用Woodbury近似法对隔离非线性比例边界单元的控制方程进行求解。该方法对大规模非线性问题的计算具有较高的计算效率,数值算例验证了算法的正确性以及高效性,将该方法进行推广,对实际工程分析具有重要意义。  相似文献   

11.
The study of dynamic soil-structure interaction is significant to civil engineering applications, such as machine foundation vibration, traffic-induced vibration, and seismic dynamic response. The scaled boundary finite element method (SBFEM) is a semi-analytical algorithm, which is used to solve the dynamic response of a three-dimensional infinite soil. It can automatically satisfy the radiation boundary condition at infinity. Based on the dynamic stiffness matrix equation obtained by the modified SBFEM, a continued fraction algorithm is proposed to solve the dynamic stiffness matrix of layered soil in the frequency-domain. Then, the SBFEM was coupled with the finite element method (FEM) at the interface to solve the dynamic stiffness matrices of the rigid surface/buried foundation. Finally, the mixed-variable algorithm was used to solve the three-dimensional transient dynamic response of the foundation in the time domain. Numerical examples were performed to verify the accuracy of the proposed algorithm in solving the dynamic stiffness matrix of the infinite domain in the frequency domain and the dynamic transient displacement response of the foundation in the time domain. Compared with the previous numerical integration technique, the dynamic stiffness matrix in the frequency domain calculated by using the proposed algorithm has higher accuracy and higher efficiency.  相似文献   

12.
The newly-developed scaled boundary finite element method (SBFEM) is able to calculate stress intensity factors directly because the singularity in stress solutions at crack tips is analytically represented. By taking this advantage, a mixed-mode crack propagation model based on linear elastic fracture mechanics (LEFM) was developed in this study. A domain is first divided into a few subdomains. Because the dimensions and shapes of subdomains can be flexibly varied and only the domain boundaries or common edges between subdomains are discretised in the SBFEM, a remeshing procedure as simple as in boundary element methods was developed with minimum mesh changes whereas the generality and flexibility of the FEM is well maintained. Fully-automatic modelling of mixed-mode crack propagation is then achieved by combining the remeshing procedure with a propagation criterion. Three mixed-mode examples were modelled. Comparisons of the numerical results with those from available publications show that the developed model is capable of predicting crack trajectories and load-displacement relations accurately and efficiently.  相似文献   

13.
This paper focuses on a parameter identification algorithm of two-dimensional orthotropic material bodies. The identification inverse problem is formulated as the minimization of an objective function representing differences between the measured displacements and those calculated by using the scaled boundary finite element method (SBFEM). In this novel semi-analytical method, only the boundary is discretized yielding a large reduction of solution unknowns, but no fundamental solution is required. As sufficiently accurate solutions of direct problems are obtained from the SBFEM, the sensitivity coefficients can be calculated conveniently by the finite difference method. The Levenberg–Marquardt method is employed to solve the nonlinear least squares problem attained from the parameter identification problem. Numerical examples are presented at the end to demonstrate the accuracy and efficiency of the proposed technique.  相似文献   

14.
This work introduces a semi‐analytical formulation for the simulation and modeling of curved structures based on the scaled boundary finite element method (SBFEM). This approach adapts the fundamental idea of the SBFEM concept to scale a boundary to describe a geometry. Until now, scaling in SBFEM has exclusively been performed along a straight coordinate that enlarges, shrinks, or shifts a given boundary. In this novel approach, scaling is based on a polar or cylindrical coordinate system such that a boundary is shifted along a curved scaling direction. The derived formulations are used to compute the static and dynamic stiffness matrices of homogeneous curved structures. The resulting elements can be coupled to general SBFEM or FEM domains. For elastodynamic problems, computations are performed in the frequency domain. Results of this work are validated using the global matrix method and standard finite element analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The use of the analytically decoupled near-tip displacement solutions as an alternative approach, is presented in this paper for the efficient finite element evaluation of the decoupled weight functions for an orthotropic 2-D crack. This alternative approach has been validated by directly comparing the prior weight function results with a symmetric mesh approach in the crack-tip neighborhood, and indirectly by comparing the calculated stress intensity factors (KI(II)) values using the computed weight functions with available KI(II) solutions of the 2-D mixed mode orthotropic cracks. In addition, this approach with analytically decoupled near-tip displacement solutions for calculating weight functions at all locations, can facilitate further extension of weight function evaluations to a more general 2-D anisotropic crack.  相似文献   

16.
裂纹面荷载作用下多裂纹应力强度因子计算   总被引:1,自引:0,他引:1  
该文基于比例边界有限元法计算了裂纹面荷载作用下平面多裂纹应力强度因子.比例边界有限元法可以给出裂纹尖端位移场和应力场的解析表达式,该特点可以使应力强度因子根据定义直接计算,同时不需要对裂纹尖端进行特殊处理.联合子结构技术可以计算多裂纹问题的应力强度因子.数值算例表明该文方法是有效且高精确的,进而推广了比例边界有限元法的...  相似文献   

17.
Shan Lu  Jun Liu  Gao Lin  Wenyuan Wang 《Acta Mechanica》2016,227(8):2125-2155
The dynamic analysis of two-dimensionalmultilayered anisotropic soilwith rigid bedrock is studied. An efficient numerical approach named the modified scaled boundary finite element method (SBFEM) is proposed in the time domain. Based on introducing the continued fraction method and auxiliary variables, the time domain solution is obtained. This solution can be applied to the transversely isotropic medium without any difficulty. For the modified SBFEM, the original scaling center is replaced by a scaling line. These characteristics enable the modified SBFEM to model the horizontal layered medium. Three significant technologies have been introduced in the formula derivation and solving process. First, the dual system is used to derive the displacement equation of the modified SBFEM, which is built on a Hamilton system. According to the principle of virtual work, the displacement equation is transformed to the dynamic stiffness equation. Second, the new continued fraction method for the unbounded domain resting on rigid bedrock is proposed. By introducing auxiliary variables, the displacement equation of motion of an unbounded domain is built. Third, it is an extremely important point that the accurate precise time-integration method is first employed to solve the global equation of motion of the modified SBFEM. This numerical integral method can achieve the machine precision. By using this method in solving the equation of motion of the modified SBFEM, an extremely accurate solution can be achieved. Finally, numerical examples validate the accuracy of the new proposed method, especially for the complex inclined model with anisotropic soil.  相似文献   

18.
A time-domain boundary element method (BEM) together with the sub-domain technique is applied to study transient response of an insulating crack near to the interface between two anisotropic piezoelectric half-planes under electromechanical impacts. The present time-domain BEM uses a quadrature formula for the temporal discretization to approximate the convolution integrals and a collocation method for the spatial discretization. Quadratic quarter-point elements are implemented at the crack tip. A displacement extrapolation technique is used to determine the dynamic stress intensity factors (DSIFs) and the dynamic electrical displacement intensity factor. Numerical examples are presented to show the effects of load combination, geometric configuration and material combination on dynamic intensity factors and dynamic energy release rate.  相似文献   

19.
The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by the boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack-tip element is derived. The numerical values of the thermal stress intensity factors for an interface Griffith crack in an infinite body are compared with the previous solutions. The thermal stress intensity factors for a symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material property. However, the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.  相似文献   

20.
李上明 《工程力学》2013,30(11):42-46
针对冲击波作用下水下结构与无限声学水域的流固耦合问题,建立了基于比例边界有限元法和有限元法的瞬态分析方法。无限水域用比例边界有限元法离散,而水下结构等有限域用有限元法模拟。该方法利用声学近似法将无限水域施加给水下结构的载荷分解成冲击波载荷和散射波载荷。冲击波载荷由水下冲击波理论确定,而散射波载荷由比例边界有限元法估值。为改善比例边界有限元法动态质量矩阵的计算效率,发展了动态质量矩阵的时域递推公式。数值算例分析结果表明了所发展的瞬态分析方法和时域递推公式的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号