首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了模拟功能梯度材料(FGM)在工程应用中可能会出现的断裂问题并计算相应的开裂载荷,通过编写用户自定义UEL子程序将梯度扩展单元嵌入到ABAQUS软件中模拟功能梯度材料的物理场,并编写交互能量积分后处理子程序计算裂纹尖端的混合模式应力强度因子(SIF),采用最大周向应力准则编写子程序计算裂纹的偏转角,并模拟了裂纹扩展路径,计算了裂纹的起裂载荷。讨论了材料梯度参数对裂纹扩展路径以及起裂载荷的影响规律。通过与均匀材料的对比,验证了功能梯度材料断裂性能的优越性。研究表明:外载平行于梯度方向时,垂直梯度方向的初始裂纹朝着等效弹性模量小的方向扩展,且偏转角在梯度指数线性时出现峰值,并随着组分弹性模量比的增加而变大;当外载和初始裂纹均平行于梯度方向时,材料等效弹性模量和断裂韧性的增加或者梯度指数的减小都导致起裂载荷变大。  相似文献   

2.
The concept of fracture mechanics is introduced to characterize the toughness of fiber-reinforced composites which should be distinguished from tensile strength. A material may have a high tensile strength but a low toughness meaning that it has a low resistance to crack extension. Depending on the analytical model used, the same experimental data may report different fracture toughness values. In general, the combination of crack propagation in directions parallel and perpendicular to the fibers makes the composite problem very difficult to analyze.Composites with well-aligned fibers are more susceptible to crack propagation parallel than perpendicular to the fibers and can be analyzed with a reasonable degree of accuracy by using the existing Kc or Sc-theory in fracture mechanics. The Kc-theory is used primarily in laboratory testing where the load is aligned normal to the crack plane whereas the Sc-theory is not subjected to such a restriction. The Kc or Sc values for several composites are reported and applied to solve various example problems illustrating the advantage of fiber reinforcement.  相似文献   

3.
This study focuses on the behavior of a crack in piezoelectric material in which the crack is parallel to the poling direction. Tests were carried out on four-point bend specimens made of PZT-5H (Morgan Electro Ceramics, Wrexham, UK). Cracks were introduced parallel to the poling direction. With an electric field induced perpendicular to the cracks, the load was increased until failure occurred. Using the load at fracture, the level of the electric field and the critical crack length, finite element analyses were carried out to determine the intensity factors. These included K I , K IV and a small K II component. The latter occurred because of the small asymmetry of the crack. The material within the crack (air) was modeled to be a dielectric material. A fracture criterion is implemented in which the test results show small scatter about the failure curve. These tests were carried out in order to improve on the scatter obtained from a previous set of tests presented in Motola et?al. (Int J Fract 159:167?C190, 2009a). The scatter from those results will be explored.  相似文献   

4.
The focus of this research was on determining the cracking behavior when parameter such as the biaxiality ratio was varied. The crack propagation under mixed-mode loading was simulated by means of finite element method. The stress intensity factors have been calculated by the linear elastic fracture mechanics approach using fracture analysis code-2D (Franc2D). The crack growth under opening mode-I was considered because the crack growth occurs mainly along the direction where the mode-I stress component becomes the maximum. The numerical integration of Paris’ equation was carried out. The effect of normal and transverse applied load (σ x, and σ y, respectively) on crack propagation was presented. It was found that the fatigue crack growth was faster at a smaller biaxial stress ratio (λ), i.e., higher σ y on the horizontal crack plan. Moreover, fatigue strength values decrease as λ decreases. The results confirm the use of fracture mechanics approach in biaxial fracture.  相似文献   

5.
Typically, fatigue crack propagation in railway wheels is initiated at some subsurface defect and occurs under mixed mode (I–II) conditions. For a Spanish AVE train wheel, fatigue crack growth characterization of the steel in mode I, mixed mode I–II, and evaluation of crack path starting from an assumed flaw are presented and discussed.Mode I fatigue crack growth rate measurement were performed in compact tension C(T) specimens according to the ASTM E647 standard. Three different load ratios were used, and fatigue crack growth thresholds were determined according to two different procedures. Load shedding and constant maximum stress intensity factor with increasing load ratio R were used for evaluation of fatigue crack growth threshold.To model a crack growth scenario in a railway wheel, mixed mode I–II fatigue crack growth tests were performed using CTS specimens. Fatigue crack growth rates and propagation direction of a crack subjected to mixed mode loading were measured. A finite element analysis was performed in order to obtain the KI and KII values for the tested loading angles. The crack propagation direction for the tested mixed mode loading conditions was experimentally measured and numerically calculated, and the obtained results were then compared in order to validate the used numerical techniques.The modelled crack growth, up to final fracture in the wheel, is consistent with the expectation for the type of initial damage considered.  相似文献   

6.
A pre-cracked square hollow section K-joint was tested under static loads up to failure. It is found that the load-displacement curves are in good agreement with the finite element results. Ductile tearing was observed to initiate from the crack front parallel to the chord side wall where fracture toughness is smaller. Using plastic collapse load obtained via twice elastic compliance technique and fracture toughness obtained from crack tip opening displacement, the two fracture parameters Kr and Lr are plotted on the standard failure assessment diagram. It shows a conservative assessment for the cracked K-joint subjected to brace end axial loads.  相似文献   

7.
A comprehensive finite element (FE) analytical tool to predict the effect of defects and damage in composite structures was developed for rapid and accurate damage assessment. The structures under consideration were curved, T-stiffened, multi-rib, composite panels representative of those widely used in aerospace primary structures. The damage assessment focussed on skin-to-stiffener debonding, a common defect that can critically reduce the performance of composite structures with integral or secondary bonded stiffeners. The analytical tool was validated using experimental data obtained from the structural test of a large stiffened panel that contained an artificial skin-to-stiffener debond. Excellent agreement between FE analysis and test results was obtained. The onset of crack growth predictions also compared well with the test observation. Since the general damage tolerance philosophy in composite structures follows the “no-growth” principle, the critical parameters were established based the onset of crack growth determined using fracture mechanics calculations. Parametric studies were conducted using the analytical tool in order to understand the structural behaviour in the postbuckling range and to determine the critical parameters. Parameters considered included debond size, debond location, debond type, multiple debonds and laminate lay-up.  相似文献   

8.
This paper develops an efficient numerical approach to predict deterministic size effects in structures made of quasi-brittle materials using the scaled boundary finite element method (SBFEM). Depending on the structure’s size, two different SBFEM-based crack propagation modelling methodologies are used for fracture analyses. When the length of the fracture process zone (FPZ) in a structure is of the order of its characteristic dimension, nonlinear fracture analyses are carried out using the finite element-SBFEM coupled method. In large-sized structures, a linear elastic fracture mechanics (LEFM)-based SBFEM is used to reduce computing time due to small crack propagation length required to represent the FPZ in an equivalent nonlinear analysis. Remeshing is used in both methods to model crack propagation with crack paths unknown a priori. The resulting peak loads are used to establish the size effect laws. Three concrete structures were modelled to validate the approach. The predicted size effect is in good agreement with experimental data. The developed approach was found more efficient than the finite element method, at least in modelling LEFM problems and is thus an attractive tool for predicting size effect.  相似文献   

9.
This paper discusses the computation of three-dimensional fatigue crack growth rates in a typical military aircraft engine fan blade attachment under centrifugal and aerodynamic loads. The three-dimensional crack growth simulations utilize FRANC3D, a state-of-the-art crack propagation software developed at Cornell University, which uses boundary elements and linear elastic fracture mechanics. With an existing three-dimensional finite element contact stress analysis with a prescribed coefficient of friction (COF) along the contact surface, the displacements and stress intensity factors are calculated on the crack leading edge to yield crack propagation trajectories and growth rates. Due to complex geometry of the fan blade attachment and loading conditions, all three-fracture modes are considered and the associated stress intensity factors (SIF) are calculated using the Crack Opening Displacement (COD) approach. Crack propagation trajectories under mixed-mode conditions are obtained using the planar and maximum tangential stress crack-extension criteria. The fatigue crack in the blade attachment is subjected to an over speed mission cycle that includes high cycle frequencies (i.e., spectrum load) and the crack growth rate is predicted utilizing the Forman–Newman–de Koning (FNK) model. Scanning Electron Microscope (SEM) images of a cracked component from an engine ASMET (Accelerated Simulated Mission Endurance Test) are used to evaluate and compare the simulation results. The calculated SIF's from the simulations indicate a strong Mode-I (KI) and Mode-III (KIII) interaction at the edge of contact (EOC). However, on the free surface it is primarily a crack opening (KI) condition only. The crack growth rates are determined using the planar extension criterion which correlates better with the test data than the maximum tangential stress extension criteria.  相似文献   

10.
The post failure behaviour of sandwich panels loaded in in-plane compression is studied by considering the structural response of such panels with symmetrically located edge debonds. A parametric finite element model is used to determine the influence of different material and geometrical properties on the failure progression, i.e. after initiation of damage. The investigated failure modes are buckling of the debonded face sheets, debond propagation and face sheet failure. The postbuckling failure mode is mainly determined by the fracture toughness of the core and the bending stiffness and strength of the face sheets. The presented approach and results can be used to determine how sandwich panels should be constituted, or not, to promote damage progression favourable for efficient energy absorption during in-plane crushing. The prolonged damage propagation is very complex as it is strongly non-linear and depends on a combination of stiffness, strength and geometry of the constituent materials.  相似文献   

11.
12.
The mixed mode bending specimen originally developed for mixed mode delamination fracture characterization of unidirectional composites has been extended to the study of debond propagation in foam cored sandwich specimens. The compliance and strain energy release rate expressions for the mixed mode bending sandwich specimen are derived based on a superposition analysis of solutions for the double cantilever beam and cracked sandwich beam specimens by applying a proper kinematic relationship for the specimen deformation combined with the loading provided by the test rig. This analysis provides also expressions for the global mode mixities. An extensive parametric analysis to improve the understanding of the influence of loading conditions, specimen geometry and mechanical properties of the face and core materials has been performed using the derived expressions and finite element analysis. The mixed mode bending compliance and energy release rate predictions were in good agreement with finite element results. Furthermore, the numerical crack surface displacement extrapolation method implemented in finite element analysis was applied to determine the local mode mixity at the tip of the debond.  相似文献   

13.
Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45 and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static critical load, at load ratios of R = 0.1 and 0.2. The crack length was determined during fatigue testing using the analytical compliance expression and verified by visual measurements. Fatigue crack growth results revealed higher crack growth rates for mode I dominated loading. For specimens with H45 core, the crack grew just below the face/core interface on the core side for all mode-mixities, whereas for specimens with H100 core, the crack propagated in the core or in the face laminate depending on the mode-mixity at the debond crack tip.  相似文献   

14.
This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for fully-automatic modelling of cohesive crack growth in quasi-brittle materials. The simple linear elastic fracture mechanics (LEFM)-based remeshing procedure developed previously is augmented by inserting nonlinear interface finite elements automatically. The constitutive law of these elements is modelled by the cohesive/fictitious crack model to simulate the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. The crack is assumed to grow when the mode-I stress intensity factor KI vanishes in the direction determined by LEFM criteria. Other salient algorithms associated with the SBFEM, such as mapping state variables after remeshing and calculating KI using a “shadow subdomain”, are also described. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the new method. The results show that this SBFEM-FEM coupled method is capable of fully-automatically predicting both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for problems with strong snap-back. Parametric studies were carried out on the crack incremental length, the concrete tensile strength, and the mode-I and mode-II fracture energies. It is found that the KI ? 0 criterion is objective with respect to the crack incremental length.  相似文献   

15.
The fatigue failure mechanism of a sandwich structure with discontinuous ceramic tile core is characterized. The sandwich structure in consideration comprises ceramic core tiles bonded to composite face sheet with a compliant adhesive layer. The discontinuous nature of the core results in a non-uniform stress field under in-plane loading of the sandwich. Static tensile tests performed on sandwich coupons revealed first damage as debonding at the gaps between adjacent tiles in the core. Tension–tension fatigue tests caused debonding at the gaps followed by initiation of cracks in the adhesive layer between the face sheet and core. Experimental data for crack length versus number of cycles is collected at various load levels. Crack growth rates (da/dN) are determined based on the experimental data acquired. The energy release rate available for crack propagation is computed using an analytical model and finite element analysis. Mode separation performed using the Virtual Crack Closure Technique (VCCT) revealed that crack propagation is completely dominated by shear (mode II). Fatigue crack growth behavior for the discontinuous sandwich structure is quantified by correlating the cyclic energy release rate with the rate of crack propagation. The loss of specimen stiffness with crack propagation is quantified using an analytical model.  相似文献   

16.
17.
Sliding contact of a rigid rough surface with a semi‐infinite medium including a horizontal subsurface crack was investigated by using linear elastic fracture mechanics and finite element method (FEM). The fractal geometry was used to characterize the rigid rough surface. The propagation of crack was studied with the shear and tensile stress intensity factors. The effect of surface roughness, crack length to depth ratio and friction at the contact and crack interfaces was investigated by using the FEM. It was shown that increasing friction coefficient at the contact interface increases both KII and KI.  相似文献   

18.
Sandwich beam specimens, recently developed for the study of facing/core debond fracture, were analyzed using the finite element method. Peel fracture was approached using a modified double cantilever beam (DCB) sandwich specimen with a precrack between the facing and core, while shear fracture employed a modification of the ASTM block shear test to include a facing/core precrack. Complex and conventional stress intensity factors were calculated for bimaterial cracks located between facing and bondlayer and bondlayer and core over a large range of core moduli. Overall, much larger stress intensity factors were observed for an interfacial crack between the facing and bondlayer than for a crack between the bondlayer and core for both types of specimens. Crack kinking analysis of the DCB specimen revealed that the debond tends to remain interfacial for stiff core materials, but may deflect into the core for compliant core materials. In shear loading of a debonded sandwich beam it was demonstrated that crack kinking is possible for any core material.  相似文献   

19.
Deformation and fracture of cork in tension   总被引:1,自引:0,他引:1  
Various properties related to the deformation and fracture of cork in tension were experimentally determined, including the Young's modulus, the stress and strain at fracture and the fracture toughnessK Ic. The transverse isotropy of cork implies that there are three independent systems of mode I crack propagation andK Ic was measured for each. The mechanisms of deformation and fracture were identified by SEM microscope observation ofin situ deformation and of the fracture surfaces and crack paths. Two fundamental mechanisms of fracture occur: crack propagation along the lateral cell walls in non-radial tension, withK Ic = 94±16 kPam1/2 and crack propagation by breaking the cell walls in radial tension withK Ic=125±14 kPam1/2. In radial tension, local fractures that do not propagate due to crack stopping were observed which lead to serrations in the tensile curves for that direction. The strain to fracture in this direction is considerably larger than in the perpendicular (non-radial) directions.  相似文献   

20.
A method for predicting the fatigue crack growth threshold using finite element analysis is investigated. The proposed method consists of monitoring the plastic strain hysteresis energy dissipation in the crack tip plastic zone, with the threshold being defined in terms of a critical value of this dissipated energy. Two-dimensional plane-strain elastic-plastic finite element analyses are conducted to model fatigue crack growth in a middle-crack tension M(T) specimen. A single-crystal constitutive relationship is employed to simulate the anisotropic plastic deformation near the tip of a microstructurally small crack without grain boundary interactions. Variable amplitude loading with a continual load reduction is used to generate the load history associated with fatigue crack growth threshold measurement. Load reductions with both constant load ratio R and constant maximum stress intensity Kmax are simulated. In comparison with a fixed Kmax load reduction, a fixed R load reduction is predicted to generate a 35% to 110% larger fatigue crack growth threshold value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号