首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
《应用化工》2022,(1):10-14
研究了甲基磷酸二甲酯(DMMP)含量对1 mol/L Li PF6/EC∶DEC∶EMC(1∶1∶1)电解液的电化学稳定性、热稳定性及电导率的影响,并首次将含DMMP的阻燃电解液应用于高压材料LiNi_(0.5)Mn_(1.5)O_4中。结果表明,加入DMMP添加剂后电解液的热稳定性得到提高,但是该添加剂电解液的电导率有所降低。研究了DMMP对LiNi_(0.5)Mn_(1.5)O_4扣式电池的电化学性能的影响,循环伏安测试表明,几乎不影响电解液在高压条件下的使用,充放电测试结果表明,DMMP的使用会降低电池的循环性能,当DMMP含量为5%时,对电池的循环性能影响较小。此外,交流阻抗(EIS)分析表明,DMMP对循环性能影响的主要原因是内阻随着循环的增加而增大。  相似文献   

2.
采用高分子网络法制备锂离子电池LiNi_(0.5)Mn_(1.5)O_4正极材料,利用XRD,SEM及电化学测试对其进行表征,研究了煅烧温度对LiNi_(0.5)Mn_(1.5)O_4的微观结构,形貌及其电化学性能的影响。研究结果表明,采用高分子网络法制备的LiNi_(0.5)Mn_(1.5)O_4材料颗粒小,粒度分布均匀,850度煅烧制得的LiNi_(0.5)Mn_(1.5)O_4电化学性能最好,大倍率3C放电循环20次比容量保持率为97.8%。  相似文献   

3.
以Mn(CH_3COO)_2、Ni(CH_3COO)_2和CH_3COOLi为原料,采用流变相法制备正极材料LiNi_(0.5)Mn_(1.5)O_4,对烧结温度、时间、以及配锂量等合成条件进行了优化。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电仪对材料的物相、形貌和电化学性能进行了表征。结果表明,在锂源过量5%,850℃煅烧6 h合成的材料具有最好的电化学性能,以0.1 C倍率下放电比容量为127.1 m Ah/g,50次循环后,容量保持率为95.4%。  相似文献   

4.
近年来随着电动汽车等高功率密度、高比能量的极大需求,传统的正极材料已经不能满足这些要求。且由于LiNi_(0.5)Mn_(1.5)O_4具有高电压和高能量密度等优点,该材料的研究也逐渐增多,在此基础上文章阐述了LiNi_(0.5)Mn_(1.5)O_4材料合成方法的研究进展。不同制备方法得到的材料电化学性能也有所差异,根据所需产品的性能采用相应的制备方法并对其进行改进也是今后研究的重要课题。  相似文献   

5.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

6.
在锂离子电池中电解液是传递锂离子的载体,正是通过电解液实现电池正极、负极及隔膜的连接,由此可见,电解液的品质会直接影响锂离子电池的性能。传统水系电解液的理论分解电压仅1.23V,所以铅酸蓄电池主要应用水系电解液其最高电压仅为2V,而锂离子电池工作电压至少在3~4V,因此研究锂离子电池高压电解液的应用及电化学性能具有重要意义。以磷酸铁锂离子电池(LiFePO_4)使用草酸二氟硼酸锂(LiBC_2O_4F_2)基电解液为例,分析LiBC_2O_4F_2的电化学性能。  相似文献   

7.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

8.
以二氧化锰、氧化镍和碳酸锂为原料,采用二次焙烧工艺制备了尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)正极材料。采用X射线衍射(XRD)、扫描电镜(SEM)、交流阻抗测试(EIS)和充放电测试对LiNi0.5Mn1.5O4正极材料进行了表征。结果表明,合成的材料晶体结构完整,形貌规则,并且表现出优异的电化学性能,其0.2 C首次放电容量为134.6 mA·h/g,5 C首次放电容量为112.9 mA·h/g,5 C循环34次后容量保持率为103.3%。  相似文献   

9.
施凯  陈友存 《广东化工》2016,(11):48-50
我们用柠檬酸辅助的溶胶法、在800℃和1000℃的最终煅烧温度下,生产高压阴极Li Ni_(0.4)Ru_(0.05)Mn_(1.5)O_4。通过同步加速器辐射、等离子体-发射光谱以及扫描电子显微镜分析、高分辨率粉末衍射来描绘材料的结构、化学组成及形态特点。我们通过X射线吸收光谱研究确认尖晶石内是否有钌掺杂、并比较过渡金属的氧化态。Li Ni_(0.4)Ru_(0.05)Mn_(1.5)O_4粉末在1000℃条件下合成,其初始容量为-139 m Ah·g~(-1),在3.5~5.0伏、C/2充电-放电率条件下,经过300次循环后容量保持率为(初始容量的)84%,这表明其大电流放电能力及循环稳定性非常好。  相似文献   

10.
锂离子电池正极材料LiFePO4的电化学性能改进   总被引:4,自引:0,他引:4       下载免费PDF全文
引言 随着社会的进步,人们对化学电源提出了高能量、长寿命、低成本、低环境污染的要求.虽然锂离子蓄电池目前已经实现了商品化,但正极嵌锂材料结构与性能的研究,以及如何提高容量和降低成本是锂离子蓄电池进一步被开发和应用的关键.  相似文献   

11.
为适应新能源汽车对动力电池材料高功率的性能要求,采用固相机械活化法制备了具有尖晶石结构的5 V正极材料LiNi0.5Mn1.5O4,并对所得样品进行了XRD分析、形貌观察、电化学性能测试等分析和表征。结果表明:实验得到的样品为纯相尖晶石结构,微观形貌为直径在10~15μm的八面体,且室温下首次放电(0.2 C)容量在130 mA.h/g左右,50次循环容量保持率为89%。  相似文献   

12.
碳包覆对LiNi_(0.5)Mn_(1.5)O_4电化学性能的影响   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用溶液沉积-真空热解法制备了LiNi_(0.5)Mn_(1.5)O_4/C复合材料。用热重与差热分析、X射线衍射分析、扫描电镜分析及电化学测试等手段对LiNi_(0.5)Mn_(1.5)O_4/C的微观结构、表面形貌和电化学性能进行了研究。结果表明,蔗糖热分解后在LiNi_(0.5)Mn_(1.5)O_4颗粒的表面包覆形成了一层无定形碳。无定形碳可以有效阻止LiNi_(0.5)Mn_(1.5)O_4颗粒的聚集,增加电极的导电面积,降低电池极化,从而改善LiNi_(0.5)Mn_(1.5)O_4的电化学性能。与未包覆的LiNi_(0.5)Mn_(1.5)O_4粉末相比,LiNi_(0.5)Mn_(1.5)O_4/C复合材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。0.2C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量达到144.8mA.h.g-1,经60次循环后平均每次循环的容量损失仅为0.0081%。而1.0C和2.0C放电时,LiNi_(0.5)Mn_(1.5)O_4/C复合材料的首次放电容量分别保持在131.9mA.h.g-1和122.4mA.h.g-1。  相似文献   

13.
尖晶石型Li_4Ti_5O_(12)锂离子电池负极材料研究现状   总被引:1,自引:0,他引:1  
赵鹏  姚彩珍  陆晓挺 《应用化工》2010,39(2):254-257
尖晶石型Li4Ti5O12因其在循环过程中具有良好的稳定性和安全性以及优良的快速充电性能,成为锂离子二次电池负极材料研究的热点。较完备的介绍了锂离子电池负极材料尖晶石型Li4Ti5O12的国内外研究制备方法,通过比较,详细描述了各方法存在问题及优缺点,给出了相应问题的解决方案,同时对尖晶石型Li4Ti5O12作为锂离子动力电池负极材料的发展趋势进行了展望,使用Li4Ti5O12负极材料的电池最有可能作为HEV动力电池率先得到应用。  相似文献   

14.
采用流变相法结合高温热处理制备LiNi0.5Mn1.5O4-xFx(x=0,0.1)。用X射线衍射、扫描电镜和电化学测试等手段对合成材料进行了表征。结果表明,F的掺入抑制了LiNi0.5Mn1.5O4颗粒长大,增强了Li+在固相中的扩散能力,改善了电极与电解质溶液之间的界面性质,有效地提高了LiNi0.5Mn1.5O4的循环性能和倍率性能。0.2C放电时LiNi0.5Mn1.5O3.9F0.1的首次放电容量达到147.8mA.h/g,经80次循环后平均每次循环的容量衰减仅为0.0068%。而0.5C和2.0C放电时首次放电容量达到0.2C放电时的94.2%和83.8%。  相似文献   

15.
采用共沉淀法以化学计量比的Ni^2+和Mn^4+(1:1)代替LiCoO2中的Co^3+合成锂离子电池正极材料LiNi0.5-xCo2xMn0.5-xO2(x=0.1)利用X射线衍射对其结构进行表征,结果表明材料的衍射峰与标准的α-NaFeO2层状结构完全对应,为层状嵌锂复合氧化物。LiNi0.4Co0.2Mn0.4O2在电压2.5-4.3V范围内表现出较好的电化学性能,循环25次后仍保持大约136mAh/g,具有很好的发展前景。  相似文献   

16.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

17.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

18.
以三氟甲磺酸镁(MFS)作为高电压双功能电解液添加剂,用于提高Li/LiNi0.5Mn1.5O4(Li/LNMO)电池的性能。采用线性扫描伏安法(LSV)、循环伏安法(CV)、充放电和交流阻抗(EIS)进行电化学性能测试,通过SEM、XPS、FTIR对含不同电解液的Li/LNMO电池循环前后的电极表面进行了表征。结果表明,MFS在充放电过程中优先于电解液溶剂氧化分解,在两个电极上形成电解液界面膜,对电极提供保护,抑制了电解液的分解。在MFS添加量(以基础电解液质量为基准,下同)为0.3%的电解液中,Li/LNMO电池在1 C倍率下循环300次后,放电比容量从初始时的135.12 mA·h/g降至123.86 mA·h/g,容量保持率高达91.67%。与电解液中未添加MFS的电池相比,其循环后阻抗明显减小,表现出较好的循环性能。  相似文献   

19.
Electrochemical properties of mixed titanium-niobium oxide TiNb2O7 (TNO) synthesized via vacuum annealing as high potential anode material for lithium-ion batteries were investigated. Crystal structure, size, and morphology are nearly independent of the annealing atmosphere for starting materials but the color of vacuum-annealed TNO (TNO-V) is dark blue while white for the air-annealed one (TNO-A). X-ray photoelectron spectroscopy analysis also indicated that Ti4+ and Nb5+ in TNO are partially reduced into Ti3+ and Nb4+ due to the introduction of oxygen vacancy. Electronic conductivity for TNO-V was around 10−3 S cm−1 at room temperature and much higher than that for TNO-A (=10−11 S cm−1). In electrochemical testing, both TNO-A and TNO-V electrodes showed reversible capacity of 260-270 mAh g−1 at low current density of 0.5 mA cm−2, while at higher current density of 5.0 mA cm−2, TNO-V electrode retained higher reversible capacity of 140 mAh g−1 than that for TNO-A electrode (=80 mAh g−1). The enhancement of intrinsic electronic conductivity greatly contributes to improve the rate performance of TNO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号