首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用分步超塑成形法研究了未经特殊细化的TC4-DT钛合金的超塑性。结果表明,在温度为860~950℃,应变速率为3.3×10~(-4)~1.0×10~(-2) s~(-1),预应变量为20%~80%,间隙保温时间为5~30min条件下,TC4-DT合金均表现出良好的超塑性(305.93%~506.67%)。变形温度为890℃,预应变量为50%,间隙保温时间为10min,第1步和第2步应变速率均为3.3×10-4 s~(-1)时,TC4-DT合金表现出最佳超塑性,伸长率为506.67%。真应力-真应变曲线表明,第2步开始时的应力明显小于第1步结束时的应力,第1步变形对该合金产生一定的软化作用。TC4-DT显微组织显示,动态再结晶一直伴随着整个分步超塑性变形过程,静态再结晶发生在间隙保温时间。再结晶行为的发生,为塑性变形提供了细小等轴组织,有利于该合金超塑性的提高。  相似文献   

2.
采用分步变形法对TA15合金在10 kN高温电子拉伸试验机上进行了超塑性拉伸试验,研究了变形温度和预变形量对该合金超塑性性能及微观组织演变。结果表明:变形温度为850~950℃和预变形量为100%~200%时,TA15合金呈现出良好的超塑性;变形温度为900℃和预变形量为150%时,该合金的超塑性能最好,最大延伸率为1456%;变形温度为950℃时,该合金的超塑性能降低,延伸率仅为188%。TA15合金的微观组织状态显示:该合金在拉伸变形过程中微观组织保持等轴状,但是随着变形温度的升高,晶粒开始长大,变形温度越高,晶粒长大越显著。  相似文献   

3.
通过高温拉伸试验研究了Ti-6Al-4V合金的高温变形力学行为和超塑性,并对试样断口附近的组织进行了观察。结果表明,随着变形温度的升高或初始应变速率的降低,Ti-6Al-4V合金的流动应力明显减小;Ti-6Al-4V合金的最佳超塑性变形工艺参数为880℃/0.001s-1,最大延伸率为689%,峰值应力仅为30.03MPa;在超塑性拉伸过程中,试样变形区发生明显的动态再结晶,使片层状的α相晶粒破碎、细化和等轴化,促进超塑性的增加;随着变形温度的提高、变形量增大和变形时间的加长,再结晶α相发生了聚集长大,从而使显微组织明显粗化。对于双态组织的两相钛合金,最佳超塑性变形温度应低于或等于片层状α→β转变的终了温度。  相似文献   

4.
分析对比了一步与两步超塑成形法对未经特殊细化的TC21钛合金超塑性和显微组织的影响。研究结果表明:在变形温度为870~930℃范围内,两步超塑成形伸长率明显好于一步超塑成形。在变形温度为870℃,第1步和第2步应变速率均为3.3×10-4s-1,预应变量为50%,间隙保温时间为20 min时,两步超塑成形的伸长率达到最大值为438.60%,和恒应变速率的一步超塑成形相比,伸长率提高了74.72%。真应力-应变曲线表明:两步超塑成形时,第2步开始时的应力明显小于第1步结束时的应力,第1步变形对金属产生了一定的软化作用。显微组织显示:动态再结晶一直伴随着整个两步超塑性变形过程,再结晶行为的发生为塑性变形提供了细小等轴组织,有利于该合金超塑性的提高。  相似文献   

5.
采用最大m值法、恒应变速率法在850~910℃下测试TC4钛合金板材的超塑性性能,分析了工艺参数对TC4钛合金板材的流动应力、应变速率敏感性指数和微观组织演变的影响。结果表明:该合金的最佳超塑性变形温度在850℃左右,在该温度下的基于最大m值法、恒应变速率法拉伸的伸长率均达到了最大且分别为1031%和631%,而在850℃下最大m值法拉伸能获得材料的最佳超塑性;当变形温度为850~910℃时,最佳变形速率0.00031~0.001 s~(-1);随变形温度的升高、应变速率的降低,该合金的流动应力降低,最大为70 MPa;该合金在850℃、应变ε=0.1条件下的应变速率敏感性指数m值最大且为0.58,并随着变形温度、应变量的增加而降低:超塑性变形中其内部发生了明显的动态再结晶,温度越高,晶粒越粗大。  相似文献   

6.
在温度830~890℃和应变速率0.0005~0.005 s~(-1)下对Ti6Al4V钛合金冷轧板材进行超塑性拉伸实验。利用光学显微镜和扫描电镜观察变形后的微观组织和断口形貌。研究了该合金的超塑性变形行为和变形机理。结果表明:在应变速率为0.0005、0.005 s~(-1)时,随着变形温度的升高,伸长率先升高后降低;在应变速率为0.001 s~(-1)时,随着变形温度的升高,伸长率逐渐降低;在830℃和0.001 s~(-1)条件下伸长率达到最大值1259.0%;超塑性最优变形参数区间为温度830~850℃、应变速率0.0005~0.001 s~(-1)。合金的应变速率敏感性指数m值随温度升高先增加,850℃时达到最大值0.472,随后逐渐减小;超塑性变形下的平均激活能为259 k J/mol。超塑性变形过程发生了明显的动态再结晶,微观组织完全转变为等轴组织。超塑性变形的主要机制为晶界滑移。Ti6Al4V合金板材超塑性拉伸断裂属为于沿晶断裂。  相似文献   

7.
通过高温拉伸试验研究了Ti60合金在940~1000℃、6.7×10-5~3.3×10-2s-1应变速率条件下的超塑性变形行为及组织演化规律。结果表明:Ti60合金具有较宽的超塑性变形温度及应变速率范围,在上述所有实验条件下都具有超塑性,伸长率220%~527%。最佳超塑性拉伸变形条件为980℃、3.3×10-4s-1,在此条件下,该合金伸长率达到最大值527%。在超塑性拉伸过程中,有晶界滑动、晶内变形、动态再结晶及扩散蠕变等过程发生,试样变形区由于发生动态再结晶,原始条状初生α相明显等轴化。  相似文献   

8.
采用恒应变速率拉伸方法研究了应变速率对TA15合金超塑性的影响。结果表明,在变形温度为900℃,应变速率为3.3×10-4~1.1×10-2s-1时,随应变速率的降低,伸长率逐渐增大,最大伸长率为1074%。同时,在高应变速率条件下也获得了良好的超塑性能。此外,应力-应变曲线中出现了较长的应变硬化阶段,应变速率越低,应变硬化阶段越长,并且有利于超塑性变形。微观组织观察表明应变速率对TA15合金显微组织演变有着显著的影响,应变速率越低,显微组织粗化越严重。高应变速率条件下,由于动态再结晶的作用,试样变形区出现了很多新的细小等轴α相。  相似文献   

9.
针对5E83合金(Er、Zr微合金化5083合金),采用超塑性拉伸试验、扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM),探究了Er、Zr微合金元素、晶粒尺寸、变形温度、应变速率对合金超塑性的影响。通过再结晶退火、空冷和水冷的搅拌摩擦加工(FSP),分别获得了晶粒尺寸为7.4、5.2、3.4μm的完全再结晶组织,作为初始状态进行超塑性拉伸。结果表明,初始晶粒尺寸越细小,超塑性伸长率越高。当晶粒尺寸>5μm时,超塑性变形过程晶粒粗化缓慢,细化初始晶粒可显著提高超塑性;而当晶粒尺寸<5μm时,超塑性变形过程晶粒粗化严重,进一步细化初始晶粒对超塑性的提高有限。不同变形温度、应变速率的超塑性拉伸结果显示在变形温度为450~540℃、应变速率为1.67×10-4~1.67×10-1 s-1,超塑性伸长率随变形温度和应变速率的提高呈现先上升后下降再上升的趋势;变形温度为520℃、应变速率为1.67×10-3 s-1条件下,水冷FSP态合金获得最大伸长率330%...  相似文献   

10.
对TA15合金在拉伸试验机上进行应变速率敏感因子(m值)高效超塑性变形试验,研究合金的超塑性性能和显微组织。结果表明:在780~950℃变形时,TA15合金呈现出良好的超塑性能;900℃变形时,该合金的超塑性能最好,m值达到0.62,最大伸长率为1287%;随着变形温度的升高,合金的超塑性能降低,950℃时伸长率仅为567%。显微组织分析表明:TA15合金在超塑性变形过程中,晶粒始终保持等轴状;由于变形温度升高,晶粒合并长大,950℃时发生?→?相转变,初生?相体积分数大幅度降低。与最大m值法相比较,m值高效超塑性变形不仅使TA15合金获得了良好超塑性能,变形效率也显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号