首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined axon-target interactions in cocultures of embryonic rat trigeminal, dorsal root, nodose, superior cervical ganglia or retina with a variety of native or foreign peripheral targets such as the whisker pad, forepaw, and heart explants. Axon growth into these peripheral target tissues was analyzed by the use of lipophilic tracer DiI. Embryonic day 15 dorsal root and trigeminal axons grew into isochronic normal and foreign cutaneous targets. Both axon populations avoided the same age heart tissue, but grew profusely into younger (embryonic day 13) or older (postnatal) heart explants. In contrast, embryonic day 15 superior cervical or nodose ganglion axons grew heavily into the same age heart and forepaw explants and to a lesser extent into the whisker pad explants. Embryonic day 15 retinal axons grew into all three peripheral targets used in this study. Primary sensory and sympathetic axons, but not retinal axons, formed target-specific patterns in the whisker pad and forepaw explants. DiI-labeling and immunostaining of primary sensory neurons in coculture revealed that these neurons retain their bipolar characteristics, and express class-specific markers such as parvalbumin, calcitonin gene-related peptide and TrkA receptors. In the whisker pad explants, axons positive for all three markers were seen to form patterns around the follicles. Our results indicate that developing peripheral targets can attract and support axon growth from a variety of sources. Whereas neurotrophins play a major role in attracting and supporting survival of subpopulations of sensory neurons, other substrate-bound or locally released molecules must regulate sensory neurite growth into specific peripheral and central targets.  相似文献   

2.
3.
In the brain stem trigeminal nuclei of rodents there is a patterned representation of whiskers and sinus hairs. The subnucleus interpolaris (SPI) contains the largest and the most conspicuous whisker patterns (barrelettes). Although neural activity plays a role in pattern formation, little is known about the electrophysiological properties of developing barrelette neurons. Here we examined the functional state of early postnatal SPI neurons during and after the consolidation of patterns by using in vitro intracellular recording techniques. After the consolidation of barrelettes [>/= postnatal day (P)4], responses to intracellular current injection consistently reflected the activation of a number voltage-dependent conductances. Most notable was a mixed cation conductance (IH) that prevented strong hyperpolarization and a large low-threshold Ca2+ conductance, which led to Ca2+ spikes and burst firing. At the oldest ages tested (P11-P14) some cells also exhibited an outward K+ conductance (IA), which led to significant delays in action-potential firing. Between P0-3, a time when the formation of barrelettes in the brain stem is still susceptible to damage of the sensory periphery, cells responded linearly to intracellular current injection, indicating they either lacked such voltage-gated properties or weakly expressed them. At all ages tested (P0-14), SPI cells were capable of generating trains of action potentials in response to intracellular injection of depolarizing current pulses. However, during the first few days of postnatal life, spikes were shorter and longer. Additionally, spike trains rose more linearly with stimulus intensity and showed frequency accommodation at early ages. Taken together, these results indicate that the electrophysiological properties of SPI neurons change markedly during the period of barrelette consolidation. Moreover, the properties of developing SPI neurons may play a significant role in pattern formation by minimizing signal distortion and ensuring that excitatory responses from sensory periphery are accurately received and transmitted according to stimulus strength.  相似文献   

4.
The actions of dopamine are mediated by specific, high-affinity, G protein-coupled receptors. Multiple subtypes of dopamine receptors have been characterized, including the D2 subtype (D2R). Cells within the dorsal root and petrosal ganglia of the rat express D2R messenger RNA (mRNA) consistent with D2R expression by primary sensory neurons. We hypothesized that neurons of the trigeminal ganglion express D2R mRNA. Total cellular RNA from rat trigeminal ganglia was analyzed on Northern blots under high stringency conditions. Hybridization of trigeminal ganglion RNA resulted in a signal which comigrated with striatal, pituitary, and hypothalamic D2R mRNA. To determine the distribution of D2R expressing cells in the trigeminal ganglion, cryostat sections were analyzed by in situ hybridization followed by emulsion autoradiography. We identified a population of clustered cells labeled with dense grain concentrations over their cytoplasms. These findings demonstrate the expression of D2 dopamine receptor mRNA in discrete subpopulations of neurons in the rat trigeminal ganglion. Our observations suggest that drugs active at dopamine receptors of the D2 subtype are potential modulators of sensory activity of neurons whose cell bodies reside in the trigeminal ganglion. D2 dopamine receptors may thus have a role in clinical pain syndromes involving the head and neck.  相似文献   

5.
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central inputs are adaptive and serve to minimize the effects of predictable sensory inputs. Understanding the interaction between peripheral and central inputs to the mormyrid ELL requires knowledge of its functional circuitry, and this paper examines this circuitry in the in vitro slice preparation and describes the axonal and dendritic morphology of major ELL cell types based on intracellular labeling with biocytin. The cells described include medium ganglion cells, large ganglion cells, large fusiform cells, thick-smooth dendrite cells, small fusiform cells, granule cells, and primary afferent fibers. The medium ganglion cells are Purkinje-like interneurons that terminate on the two types of efferent cells, i.e., large ganglion and large fusiform cells, as well as on each other. These medium ganglion cells fall into two morphologically distinct types based on the distributions of basal dendrites and axons. These distributions suggest hypotheses about the basic circuit of the ELL that have important functional consequences, such as enhancement of contrast between "on" elements that are excited by increased afferent activity and "off" elements that are inhibited.  相似文献   

6.
Expression of tyrosine hydroxylase (TH) by juxtaglomerular (JG) neurons of the olfactory bulb (OB) requires innervation of the bulb by olfactory receptor neurons (ORNs). ORN lesion selectively downregulates TH in JG neurons. In reversible odor deprivation, TH expression is downregulated as the naris is closed and then upregulated upon naris reopening. The mechanism or mechanisms regulating this dependence are unknown. TH expression could be regulated by trophic factor release and/or synaptic activity from ORN terminals. We investigated TH expression in cocultures of dissociated postnatal rat OB cells and embryonic olfactory neuroepithelium (OE) slice explants. TH-positive neurons in control dissociated OB cell cultures alone comprise only a small fraction of the total population of cells present in the culture. However, when OE slice explants are cocultured with dispersed OB cells, there is a mean 2.4-fold increase in the number of TH-positive neurons. ORNs in vivo use glutamate as a neurotransmitter. Broad spectrum excitatory amino acid antagonists (kyurenic acid) or selective antagonists of the NMDA receptor (APV) both prevent induction of TH expression in OE-OB cocultures. Furthermore, pulse application of NMDA stimulates TH expression in OB neurons in the absence of OE. In vitro, OB TH neurons express NMDA receptors, suggesting that NMDA stimulation is acting directly on TH neurons. Exposure of OE explants to natural odorants results in upregulation of TH, presumably through increased ORN activity, which could be blocked by APV. These findings indicate that odorant-stimulated glutamate release by ORN terminals regulates TH expression via NMDA receptors on JG dopaminergic neurons.  相似文献   

7.
Intrasomal recording and horseradish peroxidase injection techniques were employed in vivo to determine the morphological characteristics of touch, temperature, and mechanical nociceptive neurons in the trigeminal ganglia of crotaline snakes. The touch neurons, with a peripheral axon conducting at the A-beta range, could be subdivided into tactile and vibrotactile neurons according to their response properties, but there were no morphological differences between them. These neurons exhibited a large and oval soma and possessed a set of large stem, peripheral, and central axons which were all myelinated and equal in diameter with a constriction at the bifurcation. The temperature neurons, which conducted peripherally at the A-delta range, were physiologically separated into thermosensitive and thermo-mechanosensitive neurons, which were also morphologically indistinguishable. The temperature neurons had a round soma of medium size and a set of medium axons with varied axonal bifurcation patterns. All axons of these neurons were myelinated, but the central axon was thinner than the stem and peripheral axons. The mechanical nociceptive neurons, which had a peripheral axon conducting at the A-delta range, were morphologically heterogeneous based on their conduction velocities. The neurons conducting at the fast A-delta range were morphologically similar to the temperature neurons in the ganglion excepting their thinner central axons, whereas those at the slow A-delta range had a thinner myelinated stem axon that gave rise to a thinner myelinated peripheral axon and an unmyelinated stem axon with a bifurcation of either a triangular expansion at the bifurcating point or a central axon arising straightforwardly from the constant stem and peripheral axons. This study revealed that distinct morphological characteristics do exist for the touch and temperature neurons and the subtypes of mechanical nociceptive neurons in the trigeminal ganglion, but not for the subfunctional types of touch neurons or temperature neurons.  相似文献   

8.
To characterize the postnatal development of geniculocortical axon arbor morphology in owl monkeys at a series of ages from birth to adulthood, individual arbors were bulk-filled with HRP in brain slice preparations and were reconstructed from serial sections. At all ages, cortical layers and sublayers were obvious. Presumed M or magnocellular arbors were largely confined to layer IV alpha, but they also extended into layer IIIc (IVB of Brodmann, 1909); presumed P or parvocellular arbors were almost exclusively confined to layer IV beta. Other axons that may reflect feedback projections from MT terminated in layer IIIc. Overall, M axon arbors increased in size and complexity from birth to adulthood with mean surface-view arbor areas ranging from 0.08 +/- 0.01 mm2 in newborns to 0.24 +/- 0.02 mm2 in adults. The developing P arbor areas were, on average, as large or larger than adult (newborn = 0.07 +/- 0.01 mm2, adult = 0.047 +/- 0.01 mm2; n.s.) but the arbors were somewhat less complex. Since the brain and area 17 increase in size postnatally, the proportion of area 17 subserved by each P arbor would decrease in postnatal development. Terminal boutons with immature features were evident in both M and P populations at all developmental ages. The results indicate that, while both LGN axon types in monkeys undergo morphological changes postnatally, M arbors appear to mature by increasing arbor size and terminal branching complexity, whereas P arbors increase in complexity but not in size. These distinct programs of axon arbor development suggest that the periods of susceptibility of geniculocortical axon arbors to postnatal influences of the environment, and the types of plastic responses they potentially exhibit, are class-specific.  相似文献   

9.
In the present study, we investigated the effect of neonatally administered capsaicin on whisker-related pattern formation in the rat trigeminal complex. Both normal whisker-related patterns of barrelettes and the modified patterns seen after neonatal section of the infraorbital nerve were assessed. Capsaicin caused no change in the pattern or size of cytochrome oxidase (CO) barrelettes in the principal trigeminal nucleus (Vp) or trigeminal nucleus interpolaris (Vi) or caudalis (Vc). Injections of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA-HRP) into the posteroorbital (PO) whisker follicle in vehicle-treated animals showed that WGA labelled a larger number of trigeminal ganglion cells than HRP (203 +/- 23; cf. 158 +/- 19), with an increased labelling of small-diameter neurons (HRP: 25.9 +/- 7.7 microm; WGA: 23.2 +/- 7.2 pm). Capsaicin caused a loss of smaller diameter cells but had no effect on the location, cross-sectional area, or rostrocaudal extent of the transganglionically labelled HRP terminations in Vp, Vi, Vc, and cervical dorsal horn. WGA-HRP labelling revealed similar, but less dense, central terminal areas as HRP and an additional area of superficial terminals in the caudal medulla; these were also unaffected by capsaicin treatment. After infraorbital nerve section, CO patches and transganglionically labelled afferent terminations, corresponding to innervated nonmystacial whiskers, were approximately doubled in size. Capsaicin had no effect on the increased size of these spared whisker patches or their afferent terminal areas. These results suggest that barrelette formation is not dependent on unmyelinated afferents and that the changes in response properties seen after capsaicin, such as increased receptive fields, reflect functional changes rather than anatomical expansion of afferent terminal areas.  相似文献   

10.
In normal larval lamprey, bilateral application of horseradish peroxidase (HRP) to the dorsal part of the anterior oral hood labeled subpopulations of trigeminal components on both sides of the brain; peripherally projecting motoneurons, medullary dorsal cells (sensory), and spinal dorsal cells (sensory), as well as centrally projecting afferents in the trigeminal descending tracts. Following unilateral crush injury of the right trigeminal root, HRP labeling of sensory and motor trigeminal components on the right side gradually increased with increasing recovery time, between 2 weeks and 12 weeks postcrush (PC). Axons of trigeminal motoneurons appeared to exhibit robust regeneration, whereas restoration of projections in the descending trigeminal tract ipsilateral to the injury was incomplete. Control experiments indicated that motor and sensory axons from the intact side of the oral hood did not sprout across the midline to the denervated side. Several results suggested that regenerated trigeminal sensory fibers made synapses with brain neurons that have direct or indirect inputs to reticulospinal (RS) neurons. Following a unilateral crush injury of the right trigeminal root, escape behavior in response to stimulation of the right side of the oral hood gradually returned to normal. Muscle recordings at various recovery times confirmed that anatomical regeneration of trigeminal sensory axons was functional. In addition, at 8 or 12 weeks PC, brief stimulation of the oral hood ipsilateral or contralateral to the crush injury elicited synaptic responses in RS neurons on either side of the brain, similar to that in normal animals. In the lamprey, compensatory mechanisms probably allow recovery of behavioral function despite incomplete regeneration of trigeminal sensory axons within the central nervous system.  相似文献   

11.
It has been known for a long time that subcortical input drives the specification of cortical areas. Molecular signals mediating this instructive effect from the periphery are poorly understood. In foetal or neonatal rats, ablation of whisker follicles, transection of the infraorbital nerve, inhibition of axonal transport, but not impulse activity blockade, prevent formation of barrels in the primary somatosensory cortex (S1). These findings suggest that a chemical signal, possibly arising from the skin or the follicle, may be responsible for somatotopic pattern formation in S1. Neurotrophins promote survival and differentiation of primary sensory neurons, and are expressed in the whisker pad during development. Neonatal rats received gelfoam impregnated with NGF, BDNF or NT-3 under the whisker pad following surgical denervation of whisker rows D and E on P0. Barrel formation in S1 was assessed on P7 by acetylcholinesterase histochemistry and 5-HT-immunohistochemistry. BDNF and NT-3, but not NGF, promoted development of the cortical barrels corresponding to denervated whiskers. Furthermore, BDNF and NT-3 prevented the lesion-induced expansion of row C barrels, while NGF appeared to promote row C expansion. Our results suggest that BDNF and NT-3 arising from the whisker pad are involved in the formation and/or maintenance of the barrel pattern in S1. These findings are potentially relevant for the prevention of sensory disturbances possibly due to reorganization of central sensory circuits after peripheral nerve lesions in humans.  相似文献   

12.
Transection of the infraorbital nerve in adult rats results in an array of chronic functional anomalies in trigeminal brainstem subnucleus interpolaris, including changes in normal receptive field organization. This work examined whether long-term maintenance of acute modifications, such as unmasking or strengthening of normally ineffective inputs to interpolaris cells, might contribute to the previously described chronic abnormalities. Using glass micropipettes, extracellular isolation of 37 interpolaris cells, with infraorbital receptive fields, was maintained following intraorbital transection of the infraorbital nerve. Receptive fields and dynamic response properties were characterized immediately before and after the cut and throughout the post-transection isolation period. Orthodromic latencies to trigeminal ganglion shocks and antidromic activation from thalamus or cerebellum were also examined. Of the 37 cells, 21.6% exhibited receptive field shifts to non-infraorbital regions after cutting the infraorbital nerve. Using the normal probability of observing an interpolaris cell with more than one trigeminal division in its receptive field, the probability of observing this shift by chance was 0.0013. No such changes were observed for 12 control cells, recorded for durations equal to or greater than total recording times for the shifting cells, with the nerve intact. The representation of local circuit, thalamic-projecting and cerebellar-projecting cells was similar in the total sample; however, all neurons exhibiting transection-induced receptive field shifts were projection neurons. In comparing the sample of cells that exhibited receptive field shifts with those that did not, prior to infraorbital nerve cut, there was no difference in mean latencies and thresholds for activation from the stimulating electrodes or in mean depth at which the cells were isolated. In addition, no difference was evident in receptive field size, effective receptor surface, dynamic response characteristics or spontaneous activity. These data suggest that maintenance of acute receptive field changes, following infraorbital nerve cut, may contribute to some types of chronic functional alterations observed after such damage.  相似文献   

13.
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.  相似文献   

14.
The development of the vibrissae and their innervation and the maturation of the brainstem trigeminal sensory nuclei have been studied in the wallaby, Macropus eugenii, from birth to adulthood. At birth, developing vibrissal follicles consist of solid epidermal pegs surrounded by dermal condensations. The developing follicles and adjacent skin are innervated by trigeminal afferents. Ten days after birth the follicle contains a dermal papilla and the deep vibrissal nerve can be recognised. A hair cone is present at postnatal day (P) 30 and hairs are apparent on the skin surface by P35. By P63 the deep vibrissal nerve can be seen innervating Merkel cells in the outer root sheath; in addition, the first signs of the blood sinus can be recognised. Innervation of the inner conical body and lanceolate and lamellated receptors supplying the mesenchymal sheath and waist region are not seen until P119, when the follicle resembles that seen in the adult. At birth, central processes of the trigeminal ganglion cells have entered the trigeminal tract and extend from the rostral pons to the upper cervical cord. Labelling with a carbocyanine dye at P0 shows afferents extending medially from the tract into the trigeminal subnuclei at all levels. At this stage the trigeminal nuclei appear as areas of increased cell density in the lateral brainstem. By P30-40 the four subnuclei can be distinguished on the basis of shape, cytoarchitecture, and succinic dehydrogenase reactivity. Adult morphology is not fully established until P210. In mature animals, nucleus principalis contains closely packed, polymorphic cells, frequently aligned parallel to thick fibre bundles that traverse the nucleus obliquely. Subnuclei oralis and interpolaris contain sparsely distributed, medium to large cells, randomly oriented, as well as prominent rostrocaudally directed fibre bundles. Subnucleus caudalis consists of the marginal layer, substantia gelatinosa, and magnocellular layers as described in other species. Patches of increased succinic dehydrogenase or cytochrome oxidase reactivity, presumably corresponding to the vibrissae, are present in subnuclei principalis, interpolaris, and caudalis in developing and adult animals, although the pattern is less clear than in rats. The brainstem patches are first seen at P40, approximately 6 weeks before the corresponding vibrissal-related pattern develops in the cortex. This suggests that the onset of patch formation may be regulated independently at different levels of the pathway.  相似文献   

15.
Elimination of auditory nerve activity results in atrophy and death of nucleus magnocellularis (NM) neurons in the chick. One early event in the degeneration of NM neurons is a disruption of their ribosomes. This experiment examines the role of metabotropic glutamate receptors in afferent regulation of ribosomes. The auditory nerve on one side of a chick brainstem slice was stimulated in vitro. Rapid stimulation-dependent changes in ribosomes were visualized by immunolabeling using an antibody, called Y10B, that recognizes ribosomal RNA. In normal media, NM neurons on the stimulated side of the slice show greater Y10B labeling than the unstimulated NM neurons on the opposite side of the same slice. The role of metabotropic glutamate receptors was evaluated by unilaterally stimulating the auditory nerve in media containing the metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-carboxyphenyl-glycine (MCPG). Addition of MCPG to the bath did not block EPSPs produced by stimulating the auditory nerve. However, MCPG did prevent the stimulation-dependent regulation of ribosomes in NM neurons (as indexed by Y10B labeling). These data suggest that glutamate may play a trophic role in the young auditory system through activation of metabotropic glutamate receptors.  相似文献   

16.
Corticopulvinar connections consist of at least two morphologically distinct subpopulations. In one subgroup (E, type 1), axons have an "elongated" terminal field and thin, spinous terminations; in the other (R, type 2), axons have a small, round arbor and large, beaded terminations. Previous work (Rockland, 1996) indicates that E-type axons from several occipitotemporal areas branch extensively within and sometimes between pulvinar subdivisions, but that R-type axons tend to have spatially delimited arbors. The present report is a further investigation of R-type axons from areas V1 and MT and was initiated to test the generality of the previous findings. There are four main results: 1) By serial section reconstruction of anterogradely labeled axons, 10 of 25 axons originating in area V1 had two or three spatially separate arbors (8 and 2 axons, respectively). Sixteen axons analyzed from area MT, however, all had single arbors, although the arbors were often formed by the convergence of widely separate branches. 2) Multiple (at least 2-5) R-type corticopulvinar axons, from V1 or from MT, can converge in a single focus. 3) R-type axons originating from both areas V1 and MT can branch to other structures; namely, the superior colliculus, the pretectal area, and/or the reticular nucleus of the thalamus. 4) Finally, corticopulvinar terminations from area V1 are predominantly R-type, whereas those from MT are more predominantly E-type. These results thus provide additional evidence of the special relationship of area V1 to the pulvinar. They also emphasize that the idea of corticopulvinocortical "feedback loops," although convenient as a shorthand nomenclature, does not adequately convey the full complexity of the system.  相似文献   

17.
Neuron survival and axonal regeneration become severely limited during early postnatal development. In conjunction with our recent organotypic analysis of regeneration in the auditory midbrain, we wished to determine whether neurotrophins could serve as a trophic substance during the postnatal period. Therefore, the current study examines the development of three neurotrophin receptor tyrosine kinases (TrkA, TrkB, and TrkC) in the gerbil auditory brainstem. Immunoreactivity to TrkA, the nerve growth-factor receptor, was observed in nonneuronal cells during the first two postnatal weeks. In the cochlear nucleus of mature animals, however, there was a TrkA-positive neuronal subpopulation. In contrast, immunoreactivity to TrkB and TrkC (the receptors for brain-derived neurotrophic factor and neurotrophin-3, respectively) displayed a widespread distribution in the auditory brainstem. At postnatal day 0, TrkB and TrkC staining was virtually absent from auditory nuclei, although immunopositive neurons were present in the mesencephalic trigeminal nucleus. By postnatal day 7, TrkB- and TrkC-positive neurons were present in most brainstem auditory nuclei. At postnatal day 15, TrkB immunoreactivity was observed throughout the inferior colliculus (IC), the cochlear nucleus, the medial and lateral nuclei of the trapezoid body, and the lateral superior olive, whereas TrkC labeled only a subpopulation of neurons within the central nucleus of the IC. The TrkB immunoreactivity was present on both neuronal somata and dendrites, whereas TrkC was generally restricted to cell bodies. At postnatal day 30, TrkB immunostaining was observed on most neurons of the IC. The medial and lateral nuclei of the trapezoid body displayed extremely strong TrkB staining, followed by the cochlear nucleus. In contrast, the TrkC immunostaining was decreased dramatically by postnatal day 21. Observations at the ultrastructural level confirmed a neuronal localization of TrkB and TrkC. Immunostaining for both receptors was restricted largely to the postsynaptic density of synaptic profiles in both dendrites and somata. In summary, this study illustrates a differential pattern of immunoreactivity between three neurotrophin receptors during development. The general increase of TrkB expression is well correlated with the onset of sound-evoked activity in this system, and its synaptic localization suggests that it may be involved in the modulation or maintenance of postsynaptic physiology.  相似文献   

18.
Studies of neonatal and adult mammals have shown that neuronal morphology is regulated in part by the availability of target-derived neurotrophic factor. To test whether the same is true for embryonic neurons, which are dependent on target-derived neurotrophic factors for survival, we grew neural crest-derived sensory neurons from the trigeminal ganglion of avian embryos of different ages in vitro in different concentrations of nerve growth factor (NGF) and measured the number of branch points and total length of the resulting arborizations. Although the size and complexity of arborizations increased with embryonic age up to embryonic day (E)14, neuronal morphology for embryos younger than E14 was unaffected by the concentration of NGF in the culture medium. However, beginning at E14, the stage at which trigeminal neurons start to lose their absolute requirement for NGF for survival, the neurons had significantly more branch points and larger arborizations in higher concentrations of NGF. Thus, it appears that the extent of neurite outgrowth in young embryos is independent of neurotrophic factor concentration; each neuron that receives enough neurotrophic factor to survive elaborates approximately the same size arbor. As trigeminal neurons mature and become less dependent on neurotrophic factor for survival, they acquire the ability to respond to neurotrophic factor with increased neurite growth and branching, as in neonates and adults.  相似文献   

19.
The impact of increased levels of skin-derived nerve growth factor (NGF) neurotrophin on sensory and sympathetic innervation to the mouse mystacial pad and postero-orbital vibrissae was determined. Consistent with an approximate doubling of neuron number in trigeminal and superior cervical ganglia, many components of the sensory and sympathetic innervation were substantially enhanced. Although the increased number of neurons raised the possibility that all types of innervation were increased, immunohistochemical analysis indicated that enhanced NGF production had a differential effect upon sensory innervation, primarily increasing unmyelinated innervation. This increased innervation occurred in specific locations known to be innervated by small, unmyelinated fibers, suggesting that NGF modulated sensory innervation density, but not targeting. In contrast, sympathetic innervation was not only increased but also was distributed to some aberrant locations. In the intervibrissal fur of the mystacial pad, both the number of sensory axons and branches appeared increased, whereas in vibrissal follicle sinus complexes, only branching increased. In some areas, sensory ending density was lower than expected based upon the size of the source nerve bundles suggesting that many axons and branches were surviving but failing to form functional endings. Furthermore, the immunochemical profile of innervation was altered in some sensory populations as demonstrated by the coexistence of RT-97 neurofilament labeling in calcitonin gene-related peptide (CGRP) positive axons, by the loss of substance P colocalization in some CGRP axons, and by an absence of neuropeptide Y labeling in tyrosine hydroxylase positive sympathetic axons. Collectively, these results indicate that the NGF mediated increase in neuron number may be selective for particular sets of innervation and that increases among some populations may result from phenotypic switching.  相似文献   

20.
We have tested whether the orientation of axons sprouting from bipolar dorsal root ganglion neurons is influenced by diffusible cues from surrounding tissues. Surface ectoderm, dermomyotome, and notochord exert strong chemorepulsion on axons growing in collagen gels, operating at separations beyond those found in vivo and active in cocultures of chick and mouse tissues. Basal and alar plates of the neural tube are devoid of activity, as is the posterior-half-sclerotome, which repels in a contact-dependent manner. When ganglia are sandwiched between dermomyotome and notochord placed at a distance, axon growth is channeled in a bipolar trajectory. These results show that gradients of diffusible repulsion molecules flanking axon pathways can generate linear patterns of axon growth. We suggest that such "surround repulsion" may function generally, in concert with contact-dependent guidance mechanisms, to guide axons in the developing nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号