首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The laminin binding alpha 7 beta 1 integrin has been described as a major integrin in skeletal muscle. The RNA coding for the cytoplasmic domain of alpha 7 integrin undergoes alternative splicing to generate two major forms, denoted alpha 7A and alpha 7B. In the current paper, we have examined the developmental expression patterns of the alpha 7A and alpha 7B splice variants in the mouse. The alpha 7 integrin expression is compared to that of the nonintegrin laminin receptor dystroglycan and to that of laminin-alpha 1 and laminin-alpha 2 chains. Alpha 7A integrin was found by in situ hybridization to be specific to skeletal muscle. Antibodies specific for alpha 7B integrin and in situ hybridization revealed the presence of alpha 7 mRNA and alpha 7B protein in the E10 myotome and later in primary and secondary myotubes. In the heart, alpha 7B integrin was not detectable in the endocardium or myocardium during embryonic and fetal heart development. Northern blot analysis and immunohistochemistry revealed a postnatal induction of alpha 7B in the myocardium. In addition to striated muscle, alpha 7B integrin was localized to previously unreported nonmuscle locations such as a subset of vascular endothelia and restricted sites in the nervous system. Comparison of the alpha 7 integrin expression pattern with that of different laminin isoforms and dystroglycan revealed a coordinated temporal expression of dystroglycan, alpha 7 integrin, and laminin-alpha 2, but not laminin-alpha 1, in the forming skeletal muscle. We conclude that the alpha 7A and alpha 7B integrin variants are expressed in a developmentally regulated, tissue-specific pattern suggesting different functions for the two splice forms.  相似文献   

3.
The clustering of acetylcholine receptors (AChR) on skeletal muscle fibers is an early event in the formation of neuromuscular junctions. Recent studies show that laminin as well as agrin can induce AChR clustering. Since the alpha7beta1 integrin is a major laminin receptor in skeletal muscle, we determined if this integrin participates in laminin and/or agrin-induced AChR clustering. The alternative cytoplasmic domain variants, alpha7A and alpha7B, and the extracellular spliced forms, alpha7X1 and alpha7X2, were studied for their ability to engage in AChR clustering. Immunofluorescence microscopy of C2C12 myofibers shows that the alpha7beta1 integrin colocalizes with laminin-induced AChR clusters and to a much lesser extent with agrin-induced AChR clusters. However, together laminin and agrin promote a synergistic response and all AChR colocalize with the integrin. Laminin also induces the physical association of the integrin and AChR. High concentrations of anti-alpha7 antibodies inhibit colocalization of the integrin with AChR clusters as well as the enhanced response promoted by both laminin and agrin. Engaging the integrin with low concentrations of anti-alpha7 antibody initiates cluster formation in the absence of agrin or laminin. Whereas both the alpha7A and alpha7B cytoplasmic domain variants cluster with AChR, only those isoforms containing the alpha7X2 extracellular domain were active. These results demonstrate that the alpha7beta1 integrin has a physiologic role in laminin-induced AChR clustering, that alternative splicing is integral to this function of the alpha7 chain, and that laminin, agrin, and the alpha7beta1 integrin interact in a common or convergent pathway in the formation of neuromuscular junctions.  相似文献   

4.
Receptor-mediated activation of T lymphocytes involves protein phosphorylation by several protein tyrosine kinases, among those the src-related enzymes p56lck and p59fyn. Accumulating evidence supports the notion that these enzymes are regulated by tyrosine phosphorylation and dephosphorylation, but much is yet to be learned about regulation of their activity. Here we demonstrate that p56lck but not p59fyn exists as a complex with a 40-kDa protein, which in its ADP-ribosylated form inhibits p56lck kinase activity. ADP-ribosylation of this protein is mediated by an arginine-specific mono-ADP-ribosyltransferase, which makes use of extracellular nicotinamide adenine dinucleotide (NAD). This enzyme is a glycosyl-phosphatidylinositol-anchored protein releasable from the surface of cytotoxic T cells by glycosyl-phosphatidylinositol-specific phospholipase C. Release of arginine-specific mono-ADP-ribosyltransferase results in failure of extracellular NAD to downmodulate p56lck kinase activity. Concomitant to suppression of the kinase by NAD, CD8 mediated transmembrane signaling and p56lck kinase activation are inhibited.  相似文献   

5.
Many aspects of myogenesis are believed to be regulated by myoblast interactions with specific components of the extracellular matrix. For example, laminin has been found to promote adhesion, migration, and proliferation of mammalian myoblasts. Based on affinity chromatography, the alpha7beta1 integrin has been presumed to be the major receptor mediating myoblast interactions with laminin. We have prepared a monoclonal antibody, O26, that specifically reacts with both the X1 and the X2 extracellular splice variants of the alpha7 integrin chain. This antibody completely and selectively blocks adhesion and migration of rat L8E63 myoblasts on laminin-1, but not on fibronectin. In contrast, a polyclonal antibody to the fibronectin receptor, alpha5beta1 integrin, blocks myoblast adhesion on fibronectin, but not on laminin-1. The alpha7beta1 integrin also binds to a mixture of laminin-2 and laminin-4, the major laminin isoforms in developing and adult skeletal muscle, but O26 is a much less potent inhibitor of myoblast adhesion on the laminin-2/4 mixture than on laminin-1. Based on affinity chromatography, we suggest that this may be due to higher affinity binding of alpha7X1 to laminin-2/4 than to laminin-1.  相似文献   

6.
An immunofluorescence study of adult rat muscle tissues with a polyclonal antibody against the RGD-directed fibronectin receptor of Friend's erythroleukemia cells (alpha5beta1-integrin) unexpectedly revealed a pattern of intracellular antigen distribution. Western blotting analysis of rat and rabbit membrane fractions indicated that the antibody recognizes a 167-kDa protein expressed both in heart and in skeletal muscle (relative abundance: heart > slow muscle > fast muscle), but not in liver and kidney. The 167-kDa protein did not show altered electrophoretic mobility upon reduction and failed to bind several lectins, including wheat germ agglutinin. A study of its subcellular distribution in rabbit skeletal muscle revealed that the 167-kDa protein is mostly associated with the terminal cisternae of the sarcoplasmic reticulum (SR) and, to a smaller extent, with the sarcolemma, while it is absent in the longitudinal tubules of the SR. The 167-kDa protein is not an integral membrane protein since it can be extracted at pH >/=10. This protein can be proteolytically cleaved only in the presence of detergent, indicating that it resides on the luminal side of the SR. The 167-kDa protein could be resolved from the closely spaced sarcalumenin and histidine-rich protein by column chromatography followed by detergent dialysis and two-dimensional gel electrophoresis. The N terminus and the internal sequences did not match any known sequence in protein and DNA data bases, indicating that the 167-kDa protein is a novel muscle protein selectively localized to the SR. Integrins from rat kidney fibroblasts were not recognized by either (i) a polyclonal antiserum against the purified 167-kDa protein or (ii) the anti-alpha5beta1-integrin antiserum after affinity purification onto the 167-kDa protein. These data indicate that the 167-kDa protein is not immunologically cross-reactive with integrins, despite its reaction with a polyclonal anti-integrin antibody.  相似文献   

7.
There is currently a great interest in identifying laminin isoforms expressed in developing and regenerating skeletal muscle. Laminin alpha1 has been reported to localize to human fetal muscle and to be induced in muscular dystrophies based on immunohistochemistry with the monoclonal antibody 4C7, suggested to recognize the human laminin alpha1 chain. Nevertheless, there seems to be no expression of laminin alpha1 protein or mRNA in developing or dystrophic mouse skeletal muscle fibers. To address the discrepancy between the results obtained in developing and dystrophic human and mouse muscle we expressed the E3 domain of human laminin alpha1 chain as a recombinant protein and made antibodies specific for human laminin alpha1 chain (anti-hLN-alpha1G4/G5). We also made antibodies to the human laminin alpha5 chain purified from placenta. In the present report we show that hLN-alpha1G4/G5 antibodies react with a 400-kDa laminin alpha1 chain and that 4C7 reacts with a 380-kDa laminin alpha5 chain. Immunohistochemistry with the hLN-alpha1G4/G5 antibody and 4C7 revealed that the two antibodies stained human kidney, developing and dystrophic muscle in distinct patterns. Our data indicate that the previously reported expression patterns in developing, adult, and dystrophic human muscle tissues with 4C7 should be re-interpreted as an expression of laminin alpha5 chain. Our data are also consistent with earlier work in mouse, indicating that laminin alpha1 is largely an epithelial laminin chain not present in developing or dystrophic muscle fibers.  相似文献   

8.
The dy/dy mouse is an animal model for human merosin-negative congenital muscular dystrophy (CMD), which has been reported to have reduced or no expression of the basement membrane protein laminin alpha2. We here investigate various myogenic and nonmyogenic tissues of mature dy/dy and control 129ReJ mice histologically and for laminin alpha2 expression. In addition, expression patterns of laminin alpha1, alpha2, alpha4, and alpha5 chains, the interstitial proteins fibronectin and tenascin-C, and the adhesion molecules VCAM-1, ICAM-1, and alpha4 integrin were characterized in skeletal muscle of 1- and 7-day and mature (>6 weeks old) dy/dy and control 129ReJ mice. The laminin alpha2 chain remained detectable in myogenic tissues of dy/dy mice by immunofluorescence using two different monoclonal antibodies and by Northern blot analysis. However, laminin alpha2 expression was significantly reduced or not detectable in nonmyogenic tissues of dy/dy mice, including skin, lung, kidney, brain, thymus, and eye. Focal lesions were observed in mature skeletal muscle only, characterized by necrotic tissue, isolated VCAM-1- and ICAM-1-positive cells indicative of inflammatory processes, and regenerating muscle fibers surrounded by intense tenascin-C and fibronectin expression. In contrast to studies on human CMD muscle, laminin alpha1 was not detectable in either dy/dy or control skeletal muscle using immunofluorescence or Northern blot analysis. Immunofluorescence localized laminin alpha4 to basement membranes of blood vessels, the endoneurium of the intramuscular nerves, and the neuromuscular junction in skeletal muscle of 1- and 7-day-old dy/dy and control mice. In mature muscle, laminin alpha4 expression shifted to the perineurium of intramuscular nerves in both dy/dy and control mice. Furthermore, strong upregulation of laminin alpha4 in the basement membranes of blood vessels, the perineurium of intramuscular nerves, and of isolated regenerating muscle fibers in the dy/dy mice was apparent. Investigation of 1-day-old animals revealed expression of laminin alpha5 in skeletal muscle fiber basement membranes of dy/dy but not control animals. This difference between dy/dy and control animals was no longer apparent at 7 days after birth, indicating a temporary shift in expression pattern of laminin alpha5 in dy/dy animals. Analysis of the extracellular matrix components of 1- and 7-day-old dy/dy and control skeletal muscle revealed an early onset of the dystrophy, even before histopathological features of the disease were evident. Our data confirm the absence of laminin alpha1 chain in myogenic tissues of both dy/dy and control mice and suggest compensation for reduced laminin alpha2 in dy/dy skeletal muscle by laminin alpha4 and, in early development, also laminin alpha5. These results have significant ramifications in the diagnosis of human merosin-negative CMD.  相似文献   

9.
The role of GRP78/BiP in coordinating endoplasmic reticular (ER) protein processing with mRNA translation was examined in GH3 pituitary cells. ADP-ribosylation of GRP78 and eukaryotic initiation factor (eIF)-2alpha phosphorylation were assessed, respectively, as indices of chaperone inactivation and the inhibition of translational initiation. Inhibition of protein processing by ER stress (ionomycin and dithiothreitol) resulted in GRP78 deribosylation and eIF-2 phosphorylation. Suppression of translation relative to ER protein processing (cycloheximide) produced approximately 50% ADP-ribosylation of GRP78 within 90 min without eIF-2 phosphorylation. ADP-ribosylation was reversed in 90 min by cycloheximide removal in a manner accelerated by ER stressors. Cycloheximide sharply reduced eIF-2 phosphorylation in response to ER stressors for about 30 min; sensitivity returned as GRP78 became increasingly ADP-ribosylated. Reduced sensitivity of eIF-2 to phosphorylation appeared to derive from the accumulation of free, unmodified chaperone as proteins completed processing without replacements. Prolonged (24 h) incubations with cycloheximide resulted in the selective loss of the ADP-ribosylated form of GRP78 and increased sensitivity of eIF-2 phosphorylation in response to ER stressors. Brefeldin A decreased ADP-ribosylation of GRP78 in parallel with increased eIF-2 phosphorylation. The cytoplasmic stressor, arsenite, which inhibits translational initiation through eIF-2 phosphorylation without affecting the ER, also produced ADP-ribosylation of GRP78.  相似文献   

10.
beta 1D is a recently identified isoform of the beta 1 integrin subunit selectively expressed in skeletal and cardiac muscles. In the present study we determined the temporal expression of beta 1D and its association with alpha subunits during mouse development. By immunohistochemistry and western blot analysis we demonstrated that beta 1D begins to be expressed in skeletal muscles of 17 days embryo (stage E17). Its level progressively increases reaching maximal values few days after birth and remaining high in adult mice. At earlier stages of development (E11-E17) the beta 1A isoform is expressed in skeletal muscle cells. After E17 beta 1A is downregulated and disappears from muscle fibers few days after birth. In cardiac muscle the regulation of the beta 1D expression is different: beta 1D and beta 1A are coexpressed in the heart of E11 embryo. Subsequently expression of beta 1A declines, while beta 1D increases until it becomes the unique beta 1 isoform in cardiomyocytes few days after birth. Previous studies (Belkin et al J. Cell Biol. 132: 211-226, 1996) demonstrated that beta 1D in adult mouse cardiomyocytes is exclusively associated with alpha 7B. Western blot analysis shows that alpha 7B starts to be expressed in the heart only at stage E17, while beta 1D is expressed already at E11 embryo, indicating that alpha subunits other than alpha 7 should associate with beta 1D in early developmental stages. To investigate this aspect, beta 1 associated alpha subunits were identified by western blotting from cardiomyocytes integrin complexes immunoprecipitated with alpha subunit specific antibodies. We found that, during cardiomyocyte development, beta 1D associates with several alpha subunits namely with alpha 5, alpha 6A and alpha 7B. In conclusion these data show that the expression of the beta 1D muscle specific integrin during development occurs much earlier in heart than in skeletal muscle and it can dimerize with different alpha subunits.  相似文献   

11.
A 65-kDa protein expressed in association with warm temperature acclimation of goldfish (Carassius auratus) was purified from epaxial muscle by successive ion-exchange, gel filtration, and reversed-phase columns while monitoring immuno-reaction with a specific antibody. A total of 517 micrograms of the 65-kDa protein was obtained from 23.4 g of the muscle of 30 degrees C-acclimated fish. The purified 65-kDa protein gave one band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight was determined to be 65,000 by gel filtration and SDS-PAGE, demonstrating that it consists of a single polypeptide chain; 44 amino acid residues were determined by N-terminal amino acid sequencing. The amino acid stretch was comparatively rich in histidine and phenylalanine. Homology search in the National Biomedical Research Foundation and Swiss-Prot bank did not identify any known amino acid sequence with significant homology to the 44-amino acid stretch of the 65-kDa protein, suggesting it to be a novel protein.  相似文献   

12.
Two distinct pathogenic mechanisms, adhesion to polymer surfaces and subsequent accumulation of sessile bacterial cells, are considered important pathogenic steps in foreign body infections caused by Staphylococcus epidermidis. By using mitomycin mutagenesis, we have recently generated a mutant, strain M7, from S. epidermidis RP62A which is unaffected in adhesion but deficient in accumulation on glass or polystyrene surfaces and lacks a 115-kDa extracellular protein (designated the 140-kDa antigen; F. Schumacher-Perdreau, C. Heilmann, G. Peters, F. G?tz, and G. Pulverer, FEMS Microbiol. Lett. 117:71-78, 1994). To evaluate the role of this protein in accumulation, we harvested extracellular proteins from S. epidermidis RP62A grown on dialysis membranes placed over chemically defined medium, purified the protein by using ion-exchange chromatography, determined its N-terminal amino acid sequence, and raised antiserum in rabbits. The antibody recognized only a single band in a Western immunoblot of the crude extracellular extract. With the microtiter biofilm test, antiserum at a dilution of < or =1:1,000 blocked accumulation of RP62A up to 98% whereas preimmune serum did not. The 140-kDa antigen was found only in extracellular products from bacteria grown under sessile conditions. Of 58 coagulase-negative clinical isolates, 32 strains were 140-kDa antigen positive and produced significantly larger amounts of biofilm than the 26 strains that were 140-kDa antigen negative. The 140-kDa protein appears to be biochemically and functionally unrelated to any previously described factors associated with biofilm formation. Thus, the 140-kDa antigen, referred to as accumulation-associated protein, may be a factor essential in S. epidermidis accumulation and, due to its immunogenicity, may allow the development of novel immunotherapeutic strategies for prevention of foreign body infection.  相似文献   

13.
Tenascin-C, a predominantly mesenchymal extracellular matrix protein, has a restricted distribution in adult tissues. It has previously been shown that this protein is expressed in the bone marrow. In this paper we show that murine myeloid and lymphoid long-term bone marrow cultures differ in their expression of tenascin-C splice variants. In the adherent stromal layer of myeloid cultures, the 260-kDa polypeptide encoded by the 8-kb mRNA was the major splice variant, whereas in the stromal layer of lymphoid cultures both the shorter 210-kDa polypeptide encoded by the 6-kb mRNA and the 260-kDa polypeptide were abundantly expressed. However, in both culture systems the larger 260-kDa tenascin-C polypeptide was the major isoform secreted in the culture supernatant. This finding is in agreement with previous reports indicating that the smaller 210-kDa isoform is preferentially deposited in the stroma, whereas the alternatively spliced segment in the 260-kDa tenascin-C may contain anti-adhesive domains. Glucocorticoids in myeloid long-term bone marrow cultures and in the MC3T3-G2/PA6 cell line downregulated the expression of tenascin-C. In the present study we observed that this was due primarily to downregulation of the 8-kb major splice variant of the tenascin-C mRNA. We also studied the possible role of tenascin-C in the bone marrow by using antibodies against tenascin-C in long-term bone marrow cultures. We found that three monoclonal antibodies against the carboxyterminal type III fibronectin repeats of tenascin-C (TNCfn 7-8) increased the number of the non-adherent myeloid cells in myeloid long-term bone marrow cultures. It has recently been suggested that the TNCfn 6-8 domain of tenascin-C binds to the alpha8beta1 integrin. Using Northern blotting, we found that the integrin alpha8 subunit was expressed in adherent cells in bone marrow cultures, raising the possibility that tenascin-C acts in bone marrow cultures by binding to the alpha8beta1 integrin.  相似文献   

14.
15.
The beta 1 integrin subunit is identical with the CD29 antigen, which is found at the surface of leukocytes. Integrins are involved in cell-cell and cell-matrix adhesion, mediate neuronal attachment and neurite outgrowth in response to extracellular matrix proteins in cell culture systems. A few analyses of beta 1 integrin subunit have been done on developing and regenerating skeletal muscle in animals; but cell culture systems and animal models differ in some respects from human skeletal muscle in situ. The expression of a beta 1 integrin subunit variant in human skeletal muscle was reported merely by Western blot analysis. Our present study, performed with immunohistochemical procedures, attempts to demonstrate the expression of the beta 1 integrin subunit in developing, normal adult, and diseased human skeletal muscles. The results demonstrated that the beta 1 integrin subunit is expressed in developing, normal adult, regenerating, and denervated human skeletal muscle. In developing muscle, the beta 1 integrin subunit was observed in muscle cells at least from 12 to 16 weeks of gestation. In muscular dystrophy and inflammatory myopathy the beta 1 integrin subunit staining occurs in basophilic muscle fibers. Furthermore, the beta 1 integrin subunit is expressed in mature fast twitch type 2 fibers, and in denervated myocytes in neurogenic muscular atrophy. On serial sections, the beta 1 integrin subunit, N-CAM (neural cell adhesion molecule) and vimentin are expressed in identical muscle fibers. However, in mature fast twitch type 2 fibers the beta 1 integrin subunit is expressed exclusively and in neurogenic muscular atrophy vimentin expression is weak. In conclusion, the beta 1 integrin subunit, in human skeletal muscles, probably plays a role in the growth morphology and innervation of developing, regenerating, and denervated myocytes. Furthermore, the observation that the beta 1 integrin subunit is enriched in mature fast twitch type 2 fibers indicates that the beta 1 integrin subunits may play a role in transducing mechanical forces to extracellular matrix proteins.  相似文献   

16.
The ability of an integrin-binding Arg-Gly-Asp-Asn (RGDN)- containing peptide to influence vascular tone by interacting with the alpha5beta1 integrin was studied using rat skeletal muscle arterioles. After blockade of beta3 integrin function, isolated arterioles with spontaneous tone showed concentration-dependent vasoconstrictions to topical application of GRGDNP, a peptide that shows a greater ability to interact with alpha5beta1 than with alphavbeta3. The constriction to GRGDNP (2.1 mM) was inhibited by blocking alpha5 integrin function, and was intensified by blocking beta3 integrin function. In contrast, GRGDSP, a peptide that interacts better with alphavbeta3, was unable to induce sustained constrictions. Removal of the endothelium abolished the vasoconstriction in response to GRGDNP, suggesting that the response was due to release of an endothelium-dependent factor. Indeed, blockade of ETA endothelin receptors with BQ-610 (1 microM), similar to removal of the endothelium and alpha5 integrin blockade, inhibited the vasoconstriction. These data indicate that interaction of RGD peptides, and in particular the RGDN sequence with endothelial cell alpha5beta1, causes endothelin-mediated arteriolar vasoconstriction. These results indicate that integrins are novel signaling receptors within the vascular wall that affect vasomotor tone, and may play an important role in vascular control.  相似文献   

17.
18.
ADP-ribosylation of proteins, like phosphorylation, is a post-translational modification that can modulate protein function. Bacterial mono (ADP-ribosyl)transferases have been well studied, since potent and clinically important pathogenic exoenzymes such as diphtheria, cholera and pertussis toxins belong to this group. Some of these enzymes interfere with signal transduction mechanisms of host cells, and have become widely used as research tools in cell biology because of their high potency and selectivity. Recently, relatives of these toxins have been cloned from vertebrates. Seven members of a novel multigene family have been identified to date. Surprisingly, all are predicted to be extracellular proteins. Preferred tissues of expression are skeletal and cardiac muscle, testis and hematopoietic cells. ADP-ribosylation of target proteins on the cell surface of T cells and leukocytes have been found to modulate the transmission of extracellular signals to the cell interior.  相似文献   

19.
The pyruvate dehydrogenase complex (PDC) plays a key role in the anaerobic metabolism of the parasitic nematode Ascaris suum. Two isoforms of the alpha-subunit of pyruvate dehydrogenase (E1) have been identified: alpha I is most abundant in anaerobic adult muscle and alpha II in aerobic larvae. Both isoforms have been expressed as alpha 2 beta 2 tetramers with a muscle-specific beta-subunit, purified to apparent homogeneity, reconstituted with E1-deficient adult A. suum muscle PDC, and assayed for PDC and E1 kinase activity. Recombinant alpha II is a poor substrate for the adult E1 kinase, but its stoichiometry of phosphorylation/inactivation is similar to that reported for the human E1. Initially, inactivation parallels the incorporation of about 1 mol 32P/mol E1 and at maximal phosphorylation about 2.4 32P/mol E1 is incorporated. In contrast, recombinant alpha I (r alpha I) is phosphorylated rapidly, and substantially more phosphorylation accompanies inactivation. To examine this altered pattern of phosphorylation, the two phosphorylation sites in each E1 alpha subunit of the r alpha I (site 1 and site 2) were changed either individually or together from Ser to Ala by site-directed mutagenesis. Site 1 was phosphorylated more rapidly than site 2, but the phosphorylation of either site resulted in inactivation, and the phosphorylation of only a single E1 alpha subunit of the tetramer was necessary for inactivation. However, both E1 alpha subunits of the tetramer were phosphorylated, based on the incorporation of about 3.5 mol 32P/mol E1 at maximal phosphorylation and the altered mobility of most of the E1 alpha subunits during SDS-PAGE. These observations suggest that the regulation of both E1 isoforms is modified to maintain PDC activity during the transition to anaerobiosis.  相似文献   

20.
Fibronectin (fn) is an extracellular matrix (ECM) molecule important in cell adhesion and migration and in wound healing. It is also likely important in periodontal ligament (PDL) cell-ECM interactions, and thus in regenerating periodontal tissues. In this study we characterized PDL cells and their interactions with FN, testing different PDL cell isolates taken from healthy and diseased conditions. PDL cells were characterized by their morphology, integrin profile, motility, and bone nodule formation. Cells were then assayed for adhesion, proliferation, and chemotaxis in response to FN or FN fragments. Cell isolates were morphologically heterogeneous and fibroblastic, had a normal-appearing actin cytoskeleton and a wide range of migration potentials, and formed bone-like nodules in vitro. They expressed alpha5, beta1, alpha v, and alpha4 integrin subunits, known receptors for FN, and in fact they bound FN preferentially at 5 and 10 microg/ml. Intact FN induced greater PDL cell proliferation and chemotaxis than did FN fragments (120-kDa cell-binding, 60-kDa heparin-binding, and 45-kDa collagen-binding). PDL cells harvested from diseased and healthy conditions were no different on the basis of these assays. These data demonstrate that PDL cells are a mixed population of fibroblastic cells, capable of forming a mineralized matrix. They also suggest that maximal proliferation and chemotaxis require specific FN domains that are present on the intact molecule but not its fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号