共查询到20条相似文献,搜索用时 15 毫秒
1.
图神经网络作为一种新的深度学习模型,被广泛运用在图数据中,并极大地推动了推荐系统、社交网络、知识图谱等应用的发展.现有的异构图神经网络通常事先定义了多条元路径来学习异构图中的复合关系.然而,这些模型通常在特征聚合步骤中只考虑单条元路径,导致模型只关注了元路径的局部结构,忽略了元路径之间的全局相关性;还有一些模型则是忽略掉了元路径的中间节点和边信息,导致模型无法学习到元路径内部的语义信息.针对以上问题,本文提出一种基于元路径的图Transformer神经网络(MaGTNN).该模型首先将异构图采样为基于元路径的多关系子图,利用提出的位置编码和边编码的方法来获取元路径中的语义信息.随后使用改进的图Transformer层计算出目标节点与其元邻居的相似度,并利用该相似度来聚合其所有的元邻居信息.在3个公开数据集的节点分类和节点聚类任务中, MaGTNN均高于最新的基准模型. 相似文献
2.
异质信息网络表示学习在节点分类、链接预测、个性化推荐等多个领域上被广泛应用.现有的异质信息网络表示学习方法大多集中在静态网络,忽略网络中时间属性对节点表示的影响.为了解决该问题,文中提出基于元路径和层次注意力的时序异质信息网络表示学习方法.利用元路径捕获异质信息网络中的结构和语义信息.通过时间衰减注意力层,捕获不同元路径实例在特定时间对目标节点的影响.通过元路径级别注意力,融合不同元路径下的节点表示,得到最终表示.在DBLP、IMDB数据集上的实验表明,文中方法在节点分类和节点聚类任务上均可达到较优效果. 相似文献
3.
【背景】科技论文数量的快速增长使得如何快速查找或定位到感兴趣的文献资料成为了科研人员在科学研究过程中一个亟待解决的问题。【目的】本文旨在研究并提出一种基于图嵌入的论文推荐算法,尝试解决面向用户的论文个性化推荐问题。【方法】本文提出了一种基于异构图嵌入的论文个性化推荐算法。该算法通过异构图嵌入模型构建论文节点的嵌入表示,同时基于作者已发表的论文构建该作者的兴趣表示,最终利用两者之间的相似度对作者进行论文推荐。【结论】在DBLP数据集上的实验证明了本文提出的模型及算法的有效性。 相似文献
4.
传统的协同过滤算法没有充分考虑用户和商品的交互信息,且面临数据稀疏、冷启动等问题,造成了推荐系统的结果不准确.在本文中提出了一种新的推荐算法,即基于融合元路径的图神经网络协同过滤算法.该算法首先由二部图嵌入用户和商品的历史互动,并通过多层神经网络传播获取用户和商品的高阶特征;然后基于元路径的随机游走来获取异质信息网络中... 相似文献
5.
异质信息网络能够对真实世界的诸多复杂应用场景进行建模,其表示学习研究也得到了众多学者的广泛关注.现有的异质网络表示学习方法大多基于元路径来捕获网络中的结构和语义信息,已经在后续的网络分析任务中取得很好的效果.然而,此类方法忽略了元路径的内部节点信息和不同元路径实例的重要性;仅能捕捉到节点的局部信息.因此,提出互信息与多条元路径融合的异质网络表示学习方法.首先,利用一种称为关系旋转编码的元路径内部编码方式,基于相邻节点和元路径上下文节点捕获异质信息网络的结构和语义信息,采用注意力机制来建模各元路径实例的重要性;然后,提出一种互信息最大化与多条元路径融合的无监督异质网络表示学习方法,使用互信息捕获全局信息以及全局信息和局部信息之间的联系.最后,在两个真实数据集上进行实验,并与当前主流的算法进行比较分析.结果表明,所提方法在节点分类和聚类任务上性能都有提升,甚至和一些半监督算法相比也表现出强劲性能. 相似文献
6.
《计算机工程与应用》2023,(11):241-250
学术大数据的高速膨胀为学术工作者高效选择有效学术信息带来了巨大挑战,运用学术刊物推荐以应对学术信息过载是主流方式之一。此研究专门解决如何为论文手稿高效推荐合适投稿期刊这一问题。引入学术异构信息网络,融合论文文本主题信息,提出一种新的学术刊物推荐方法(SCVR)。借助主题模型建模论文摘要和标题等文本内容提取主题信息,指导不同类型节点映射到多主题特征空间;将元路径上下文信息聚合到目标节点,形成了多跳元路径下节点的多主题表示;将不同元路径下形成的节点向量进行融合,实现每个节点多元元路径下的多主题表示。SCVR利用节点文本内容和网络结构学习节点多主题表示,完成学术刊物推荐。在两个真实学术数据集上的测试发现,提出了一种基于异构信息网络且融合文本主题信息的学术刊物推荐方法,在相同条件下,SCVR的推荐效果比仅基于异构信息网络的推荐结果在Precision和NDCG上平均提高了2.7%,且比经典学术刊物推荐方法平均高了19%,说明SCVR在学术刊物推荐领域有更优良的性能。 相似文献
7.
8.
社交媒体方便了人们的日常交流和信息传播,同时也是谣言滋生和传播的温床,因此如何在谣言传播早期自动监测极具现实意义,而现有的检测方法没有充分利用微博信息传播图的语义信息。为了解决这个问题,基于异构图注意力网络(HAN)构建了谣言监测模型MicroBlog-HAN。该模型采用含有节点级注意力和语义级注意力的分层注意力机制。首先,节点级注意力结合微博节点的邻居生成两组具有特定语义的节点嵌入;然后,语义级注意力融合不同语义,得到最终的节点嵌入,并输入到分类器中执行二分类任务;最后,给出输入微博是谣言还是非谣言的分类结果。在两个真实的微博谣言数据集上的实验结果表明,MicroBlog-HAN模型可以实现微博谣言较准确的识别,准确率超过87%。 相似文献
9.
近年来,网络表示学习(Network Representation Learning,NRL)作为一种在低维空间中表示节点来分析异质信息网络(Heterogeneous Information Networks,HIN)的有效方法受到越来越多的关注。基于随机游走的方法是目前网络表示学习常用的方法,然而这些方法大多基于浅层神经网络,难以捕获异质网络结构信息。图卷积神经网络(Gragh Convolutional Network,GCN)是一种流行的能对图进行深度学习的方法,能够更好地利用网络拓扑结构,但目前的GCN设计针对的是同质信息网络,忽略了网络中丰富的语义信息。为了有效地挖掘异质信息网络中的语义信息和高度非线性的网络结构信息,进而提高网络表示的效果,文中提出了一种基于融合元路径的图卷积异质网络表示学习算法(MG2vec)。该算法首先通过基于元路径的关联度量方法来获取异质信息网络中丰富的语义信息;然后采用图卷积神经网络进行深度学习,捕捉节点和邻居节点的特征,弥补浅层模型捕捉网络结构信息能力不足的缺陷,从而实现将丰富的语义信息和结构信息更好地融入低维的节点表示中。在数据集DBLP和IM... 相似文献
10.
推荐系统能够有效解决信息过载等问题,得到了国内外众多学者的广泛关注.真实世界中的应用场景往往可以建模成异质信息网络,因此基于异质信息网络表示学习的推荐算法成为了近年来的研究热点.然而,当前的研究工作仍然存在异质信息提取缺乏深度、节点的复杂关系发掘不充分等问题.为解决这些问题,文中提出了基于异质信息网络表示学习与注意力神... 相似文献
11.
随着短视频数量的爆发式增长, 精准的个性化短视频推荐成为学术界和工业界的迫切需求。然而,现有的推荐方法没有考虑实际的短视频具有数据多源异构多模态、用户行为复杂多样、用户兴趣动态变化等特点。短视频模态间的语义鸿沟、社交网络用户多行为挖掘、用户动态兴趣捕捉依然是短视频推荐领域面临的三个重要问题。针对当前推荐系统存在的问题,并充分考虑短视频推荐系统的实际需求,本文介绍了短视频推荐中基于图表示学习的短视频推荐方法;研究了短视频异构多模态特征表示,充分挖掘视频内容特征并进行高效融合;研究了短视频社交网络用户多行为表示,通过社交网络用户多种行为挖掘更细粒度的用户偏好;研究了用户的动态偏好表示方法,通过利用时序信息建模用户的动态兴趣,保证推荐结果的准确度并增加其多样性与个性化。本研究可在理论和实践上推进基于图特征学习的短视频推荐研究,也可作为短视频推荐系统的关键技术。 相似文献
12.
13.
扩展和综合利用多种图书特征及其关联关系,从语义相关的角度提高图书推荐的准确性和多样性,探索不同特征对于图书推荐的贡献程度和影响.抽取多种图书特征构建图书异构网络并设计形成特征间的多维关联关系.引入异构网络表示学习方法,融合多种图书特征,形成图书的语义向量表示,选取向量相似度指标计算并表示图书间的语义相关程度,实现相关图... 相似文献
14.
万物依存而在,现实世界中的实体之间存在着各种不同的关联关系,如人与人之间的关系可以构成社交网络,学者通过共同发表论文、引用文献构成引文网络.同质网络将节点和边抽象为单一类型,但是这会造成大量的信息丢失.为了更大程度地保证信息的完整性和丰富性,有研究者提出了异质信息网络的概念,即包含多种类型节点和边的网络模式.将异质信息网络中的拓扑结构和语义信息嵌入到低维向量空间中,下游任务能够利用异质信息网络中的丰富信息进行机器学习或数据挖掘任务.文中总结了近年来基于深度学习模型的异质信息网络表示学习方法的研究成果,同时聚焦两类关键问题——异质信息网络语义自动提取和动态异质信息网络的表示学习方法,列举了异质信息网络表示学习新的应用场景,并展望了异质信息网络的未来发展趋势. 相似文献
15.
MOOC平台上,一个课程可能存在多个版本的视频,为向学生推荐一个满足学习兴趣的MOOC视频就需要分析学生兴趣与视频内容的关系,为此,提出一种基于元路径注意力机制的视频推荐方法Mrec。一方面,利用异构信息网(HIN)描述学习者和MOOC资源之间的关系,进而使用元路径表达学生和视频之间的交互关系;另一方面,利用注意力机制捕捉学生、视频、元路径的特征对学习兴趣的影响情况。具体来说,Mrec方法包括两层注意力机制:第一层是节点注意力层,通过邻居的特征加权联合节点自身的特征,利用多头注意力得到实体在不同元路径下的特征表示;第二层是路径注意力层,通过融合在不同元路径的指导下学习到的实体的特征表示来捕捉实体在不同兴趣下的特征表示,并将学习到的用户与视频实体输入到多层感知机(MLP)中得到预测分数来进行top-K推荐。在MOOCCube和MOOCdata数据集上进行实验的结果表明,Mrec的点击率、归一化折损累积收益(NDCG)、平均倒数排名(MRR)与受试者工作特征曲线下面积(AUC)均优于对比方法。 相似文献
16.
17.
根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品先后点击顺序的物品依赖关系图,据此提出一种图表示学习算法,生成可以保留关联物品间复杂关联关系的物品向量表达,最后,基于长/短期记忆机制,将物品向量表达作为“固定”输入,从而构建一个可以同时捕捉用户长期兴趣和短期兴趣的会话感知推荐模型.不同于其他相关工作,首次提出将下一次点击预测模型建立在“固定”物品表达的基础上.在公开数据集上的实验结果表明:提出的推荐模型在预测准确性和推荐多样新颖性上的表现优于其他相关方法. 相似文献
18.
在群组推荐中庞大且稀疏的数据往往容易忽视用户群组及项目之间的复杂依赖关系,因此融合不同用户偏好行为嵌入,使用户对群组依赖关系的表现更直观,同时为了在对比中增强视图效果,以获得更准确的推荐结果的目的,提出了一个面向超图的可解释性对比元路径群组推荐框架。通过聚合用户项目群组之间的依赖关系,构建元路径表现实体之间的不同类型交互,以促进实体的相似性,更准确地从数据中获取用户的组内、组外交互;通过将可解释性模型与对比学习相结合的技术,以提高模型的可解释性和性能;通过解释引导增强操作在模型框架上生成的正负视图上结合自监督对比学习,来解决上述问题。在真实数据集上进行实验,验证了所提出方法的有效性。 相似文献
19.