共查询到19条相似文献,搜索用时 62 毫秒
1.
基于HMM的单样本可变光照、姿态人脸识别 总被引:2,自引:1,他引:2
提出了一种基于HMM的单样本可变光照、姿态人脸识别算法.该算法首先利用人工配准的训练集对单张正面人脸输入图像与Candide3模型进行自动配准,在配准的基础上重建特定人脸三维模型.对重建模型进行各种角度的旋转可得到姿态不同的数字人脸,然后利用球面谐波基图像调整数字人脸的光照系数可产生光照不同的数字人脸.将产生的光照、姿态不同的数字人脸同原始样本图像一起作为训练数据,为每个用户建立其独立的人脸隐马尔可夫模型.将所提算法对现有人脸库进行识别,并与基于光照补偿和姿态校正的识别方法进行比较.结果显示,该算法能有效避免光照补偿、姿态校正方法因对某些光照、姿态校正不理想而造成的识别率低的情况,能更好地适应光照、姿态不同条件下的人脸识别. 相似文献
2.
3.
基于特征加权的人脸识别 总被引:1,自引:0,他引:1
现有的人脸识别方法通常未考虑不同特征或像素对识别结果的影响。实际上,人脸面部不同特征在人脸识别过程中的作用是不同的。研究了各个特征在识别中的作用,分别采用三种加权方法对人脸图像进行了预处理,并应用流行的人脸识别方法(联想记忆、主分量分析和Fisher线性判别分析)进行识别。最后用标准人脸库ORL进行了实验,实验结果表明特征加权方法对人脸识别是有效且通用的。 相似文献
4.
人脸识别是图像识别中受人关注较多的领域之一,人们希望计算机能有像人类一样有强大的视觉能力。人脸识别属于生物特征是识别一种,虽然准确性不如虹膜、指纹的识别,但由于它的简单、直观、易于采集特征且对用户无害,使它成为容易被用户接受的一种生物特征识别。该文介绍了基于隐马尔科夫模型进行人脸识别的算法和具体系统的实现。首先介绍识别所需的图像特征提取算法"二维离散余弦变换"和匹配算法"高斯混合模型和隐马尔可夫模型",其次介绍依据算法实现系统的过程。 相似文献
5.
本文着重讨论了在不降低识别率的前提下,如何加快训练速度的人脸识别方法。通过分析人脸图像的特点,利用小波变换将人脸图像进行降维和滤波处理,然后利用Fisher线性鉴别分析进一步提取具有鉴别力的特征矢量,在ORL人脸库及其与Yale混合库的实验结果表明,本方法不仅有效提高了训练和识别速度,整体耗时只有FisherFace方法的1/4左右,而且提高了识别率(至少不降低),使得整个识别过程变得稳定。 相似文献
6.
随着人脸识别技术的不断发展,单样本人脸识别已成为当今的一个热点。针对单样本人脸识别问题,提出一种基于通用框架学习的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用FLDA方法进行特征抽取,将所有样本投影到特征子空间,再利用最近邻方法完成人脸识别,一定程度上减轻了人脸的表情、姿态、光照等因素对识别效果的影响,提高了识别率。该方法的有效性分别在ORL及Yale两大人脸库上得到了验证。 相似文献
7.
基于改进的PCA算法和Fisher线性判别的人脸识别技术 总被引:10,自引:0,他引:10
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和F isher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果. 相似文献
8.
基于PCA算法的人脸识别 总被引:3,自引:0,他引:3
介绍了隐马尔可夫特征脸模型(HMEM),由概率性主成分分析方法(PPCA)与离散空间马尔可夫模型法(SL-HMM)整合而成,具有PPCA和SL-HMM的双重特性。利用ORL数据库进行人脸识别实验,结果说明该模型在性能上表现出较大的优势。 相似文献
9.
基于小波变换和隐马尔可夫模型的人脸识别方法 总被引:4,自引:1,他引:4
提出了基于小波变换和隐马尔可夫模型的人脸识别方法。对原始图像采用小波分解后,原始图像被分解到不同的频带上。利用小波理论分析可知,在每一级分解中,低频子图像包含了原始图像的主要描述信息,而其他3个高频子图像包含的信息较少,对模式分类的作用也较小,所以可忽略不计。该算法首先对图像进行3级小波分解,然后把3个不同分辨率的低频子图像由小到大排列成树状结构,形成低频小波树。接着利用主元分析对每个小波树枝进行去相关、降维,形成特征小波树枝,并把它作为观测向量对隐马尔可夫模型进行训练,把优化的模型参数用于人脸识别,实验结果表明,该方法识别率较高,具有很好的发展前景。 相似文献
10.
11.
现有的多数人脸识别系统都专注于如何提高人脸识别算法的性能,但缺乏一种对数据源(人脸样本)进行分析和评估的机制。针对此问题,提出了一种建立在数据源分析基础上对典型人脸识别算法进行后处理的方法。为了揭示现有典型识别算法的识别性能在无约束环境下的鲁棒性,通过建立Lambertian反射模型和3D人脸模型,对特征脸算法的识别性能随数据源的变化(人脸姿态和光照改变)而变化的情况进行了分析评估。针对“数据源灾难”问题,提出了一种基于隐马尔可夫模型(HMM)的后处理解决方法,该方法通过利用视频序列图像的连续性和对训练人脸库的统计分析来提高判别分析方法对无约束环境的鲁棒性。实验结果表明,该方法可以有效地提高识别算法对“数据源灾难”的鲁棒性,提高识别率。 相似文献
12.
采用支持向量机(SVM)和隐马尔可夫模型(HMM)相结合的方法进行人脸识别。首先对照片中的人脸进行定位,从定位区域提取人脸各个器官的独立基特征,然后使用支持向量机和隐马尔可夫混合模型对定位区域进行人脸识别。利用SVM和HMM结合的优点,取得较高的识别率。 相似文献
13.
14.
汽车司机疲劳驾驶是引发交通事故的一个重要原因。驾驶员在正常驾驶、瞌睡驾驶及疲劳驾驶3种状态下的眼睛张开程度有一定的区别。提出了一种ICA结合隐马尔可夫模型(HMM)识别眼部状态的识别算法,首先对彩色图像进行二值化处理,然后利用ICA算法进行眼部状态特征提取,为了加快特征提取的速度,这里采用FastICA算法;然后通过HMM进行眼部状态识别。实验结果表明,该算法可快速有效地识别出驾驶员眼部状态。 相似文献
15.
Haifeng Hu 《Pattern recognition》2011,44(3):519-531
This paper presents a novel face recognition method which integrates the Augmented Dual-Tree Complex Wavelet Transform (ADT-CWT) representation of face images and Regularized Neighborhood Projection Discriminant Analysis (RNPDA) method. ADT-CWT first derives desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. Different from DT-CWT, which does not consider the structural characteristics of the face images, our representation method not only considers the statistical property of the input features but also adopts an Eigenmask to emphasize those important facial feature points. The dimensionality of the derivation of ADT-CWT feature is further reduced by using RNPDA, which directly obtain a set of optimal eigenvectors with a simple regression framework and thus can overcome the small sample size problem of NPDA. Extensive experiments have been made to compare the recognition performance of the proposed method with some popular dimensionality reduction methods on the FERET database, the extended YALEB database and the CMU PIE database. The results verify the effectiveness of the proposed method. 相似文献
16.
In face recognition, the Fisherface approach based on Fisher linear discriminant analysis (FLDA) has obtained some success. However, FLDA fails when each person just has one training face sample available because of nonexistence of the intra-class scatter. In this paper, we propose to partition each face image into a set of sub-images with the same dimensionality, therefore obtaining multiple training samples for each class, and then apply FLDA to the set of newly produced samples. Experimental results on the FERET face database show that the proposed approach is feasible and better in recognition performance than E(PC)2A. 相似文献
17.
二维方法用于图像矩阵特征提取,虽然速度快,但影响了分类速度。针对二维线性鉴别分析(Two-Dimensional Linear Discriminant Analysis,2DLDA)的特点,研究了一种基于图像分块的改进Fisher人脸识别算法,该算法首先对人脸图像进行压缩降维处理,得到相应的特征矩阵,然后利用改进Fisher算法对特征矩阵进行类间离散度矩阵和类内离散度矩阵的计算,该算法充分考虑了类别信息,避免了传统Fisher算法造成的小样本问题,有效提高了分类速度。基于ORL(Olivetti Research Laboratory)与Yale人脸数据库的实验结果证明了该算法的有效性。 相似文献
18.
二维主成分分析方法的推广及其在人脸识别中的应用 总被引:7,自引:2,他引:7
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 相似文献
19.
把基于序列模型的隐Markov模型引入文本分类领域。把待分类文本描述成一系列状态演化的隐Markov过程,其中状态以特定的概率产生代表文本的特征项。用序列模式来描述文本类,文本序列通过与隐Markov模型的匹配,求出其对应状态序列和最大输出概率。比较各个文本类的结果,达到文本分类的目的。最后通过和简单向量算法,KNN,Naive Bayes分类算法的比较,说明本算法的在文本分类中的成功应用。 相似文献