首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface modification of polyethersulfone (PES) membrane surfaces using UV/ozone pretreatment with subsequent grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. The surface modifications were evaluated in terms of hydrophilicity, chemical composition of the surface and static protein adsorption. In both methods, poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG) and chitosan were chosen as hydrophilic polymers to chemically modify the commercial virgin PES membrane to render it more hydrophilic as these materials have excellent hydrophilic property. Modified PES membranes were characterized by contact angle and XPS. Contact angles of modified PES membranes were reduced by 19 to 58% of that of the virgin PES membrane. PES membrane modified with PEG shows higher wettability than other hydrophilic materials with the highest contact angle reduction shown for UV/ozone pretreated, PEG grafted PES membrane surface. In general, XPS spectra supported that the PES membranes were successfully modified by both grafting with UV/ozone pretreatment and interfacial polymerization methods. The results of the static protein adsorption experiments showed all surface modifications led to reduction in protein adsorption on PES membranes; the highest protein adsorption reduction occurred with membrane modified by UV/ozone pretreatment followed by PES grafting, which corresponded to the highest contact angle reduction. However, there seems to be no clear correlation between contact angle reduction and reduction in protein adsorption in the case that involved chitosan. Nevertheless, membranes modified with chitosan do show higher reduction in protein adsorption than membranes modified with other materials under the same conditions.  相似文献   

2.
The pervaporative performances of pristine polydimethylsiloxane (PDMS) membrane and modified one by hybridizing with graphene nanosheets (PDMS-G) were evaluated for phenol removal from aqueous solutions. The incorporation of hydrophobic graphene nanosheets could enhance the process performance. The optimum performance was determined at 0.2 wt% crosslinker concentration and 0.2 wt% graphene content with a significant improvement in the separation factor up to 42.35. The enhanced separation factor can be attributed to optimized interfacial free volume in the structure of the membranes and formation of π-π interactions between graphene and phenol. The effects of operating parameters on separation performance were also evaluated.  相似文献   

3.
利用L-3,4-二羟基苯丙氨酸(L-DOPA)的氧化自聚合,在杂环芳纶表面修饰聚L-3,4-二羟基苯丙氨酸(PDOPA)活性涂层来提高芳纶的表面活性及耐紫外辐照性能。结果表明:改性后芳纶表面粗糙度显著提高,同时,PDOPA涂层上大量的羧基、羟基等活性单元均有利于增强与环氧树脂的机械锁合力,改性后芳纶/环氧树脂复合材料的界面剪切强度提高了32.0%。此外,上述改性过程对杂环芳纶本身力学性能影响较小,纤维的拉伸强度保持率可以达到100%,基本实现了无损改性。同时,由于PDOPA的保护作用,改性后芳纶的耐紫外辐射性能显著提高;经过168 h紫外线辐照处理后,其拉伸强度保持率可达到92.5%,显著提升了杂环芳纶的耐紫外线辐照特性。  相似文献   

4.
In this article, aramid fibers III were surface modified using an ammonia‐plasma treatment to improve the adhesive performance and surface wettability. The surface properties of fibers before and after plasma treatment were investigated by X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The interfacial shear strength of each aramid fibers III‐reinforced epoxy composites was studied by micro‐debonding test. The ammonia‐plasma treatment caused the significant chemical changes of aramid fibers III, introducing nitrogen‐containing polar functional groups, such as ? C? N? and ? CONH? , and improving their surface roughness, which contributed to the improvement of adhesive performance and surface wettability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40250.  相似文献   

5.
This paper investigates the synthesis of graphene oxide (GO)-incorporated polyamide thin-film nanocomposite (TFN) membranes on polysulfone substrate for forward osmosis applications. The GO nanosheets were embedded into polyamide layer using different concentrations (0.05?0.2 wt%). The results represented the alteration of polyamide surface by GO nanosheets and enhancing the surface hydrophilicity by increasing the GO loading. The results showed that the water flux for 0.1 wt% GO embedded nanocomposite (TFN) membrane was 34.7 L/m2 h, representing 90% improvement compared to the thin-film composite, while the salt reverse diffusion was reduced up to 39%.  相似文献   

6.
The effect of graphene oxide (GO) loading (0.03, 0.06, 0.09, 0.12, and 0.30 wt%) in the aqueous phase on the performance of reverse osmosis (RO) polyimide (PI) thin film composite (TFC) membrane was investigated. TFC and thin film nanocomposite (TFN) membranes were produced through interfacial polymerization and the imide linkage was confirmed by attenuated total reflection Fourier transform infrared spectroscopy. The spongy-like structure with vertical fingers of RO PI-GO TFN membranes was explored by top-surface and cross-sectional field emission scanning electron microscope (FE-SEM). The roughness of the membranes was determined. All PI-GO TFN membranes exhibited enhanced desalination performance in comparison with PI membranes. Samples with 0.06 wt% GO performed the best with a water flux of 31.80 L/m2/h, salt rejection of 98.8%, and very good antibiofouling properties. This hydrophilic membrane displayed significantly enhanced chlorine-resistance with water flux of 36.3 L/m2/h and salt rejection of 98.5%. This work provides a promising start for designing rapid water permeation PI-GO TFN membranes in water desalination.  相似文献   

7.
A selective determination of levodopa (LD) in the presence of ascorbic acid (AA) and uric acid (UA) has been investigated at a glassy carbon electrode modified with reduced graphene oxide (rGO). The graphene oxide was synthesized chemically by Hummers method and characterized by energy-filtered transmission electron microscopy (EF-TEM). The reduced graphene oxide modified glassy carbon electrode (rGO/GCE) showed excellent electrochemical performance in the simultaneous electrochemical detection of LD, AA, and UA due to the unique properties of graphene, such as large surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of rGO/GCE were investigated with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Well-resolved oxidation peak potentials, corresponding to the oxidation of AA, LD, and UA, were observed from their mixture solution at 0.098, 0.285, and 0.423 V, respectively. The rGO/GCE showed that LD can be detected without the interference of AA and UA. Under the optimized conditions, the oxidation peak current of LD is linear with the concentration of LD from 2.0 to 100 μM with the detection limit of 1.13 μM (S/N = 3). The present electrode system was also successfully applied to direct determination of LD in commercially available tablets and urine samples.  相似文献   

8.
This study thoroughly studied the implements of fluorosilane modified graphene oxide (GO) on the mechanical, thermal, and water absorption properties of the epoxy composites built up by specific content of modified GO. Fluorosilane graphene oxide (GOSiF) was analyzed using Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffractometer. The epoxy composites tensile and bending modulus were increased by 11.46% and 62.25% with 0.1 and 0.5 wt% GOSiF loading, respectively. The good interfacial interaction was observed between epoxy matrix and GOSiF nanosheets under scanning electron microscopy. The thermal stability increases with GOSiF loading. Epoxy composite with 0.3 wt% GOSiF shows 5 °C increases in the T10%. The residual weight raised by 58.67% with 0.3 wt% GOSiF content. The water absorption study revealed small water uptake was obtained for all GOSiF composites. With 0.3 wt% loading of GOSiF, the maximum water content drops from 4.97% for neat epoxy to 1.98%. POLYM. ENG. SCI., 59:1250–1257 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
《Polymer Composites》2017,38(3):528-537
Polyamide 6 (PA6)/graphene oxide (GO) nanocomposites were prepared via in situ , ring opening polymerization of ε‐caprolactam in the presence of both dried powder and colloidally dispersed single layer GO. Characterization of the composites and GO (both as received and after removal from the composites) was carried out using atomic force microscopy (AFM), Fourier transform infra‐red spectroscopy (FTIR), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), thermogravimetric analysis, differential scanning calorimetry and tensile testing. Reduction in the GO during polymerization was observed. So too was functionalization of the GO flakes with PA6 chains. FTIR demonstrates the retention of some carbonyl oxygen functionalities after polymerization. AFM imaging indicated the presence of single layer GO and the sheet height increased to ∼4 nm for graphene sheets after polymerization. This suggests the graphene acts as a base for polymer chain formation, leading to good interfacial interaction between the filler and matrix. Raman data show no evidence of the restoration of sp2 hybrid as a result of polymerization. The nanocomposites are thermally stable while molecular weight and crystallinity have both been affected by GO inclusion. A percentage linear increase in Young's modulus was observed as colloidally dispersed GO content increased. POLYM. COMPOS., 38:528–537, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
A facial method for preparing reverse osmosis polyamide (PA) membranes of excellent antifouling and separation performance was developed via covalently grafting phosphonic acid on membrane surface. First, a pristine PA layer was synthesized by interfacial polymerization between m-phenylenediamine and trimesoyl chloride. Then, a second interfacial reaction was implemented between ethylenediamine and the residual acryl chloride on the pristine PA layer, generating an active layer enriched by primary amine. Finally, the amine-rich surface treated by formaldehyde and phosphorous acid to produce a membrane surface modified by phosphonic acid groups. Surface characterization by attenuated total reflectance infrared, X-ray photoelectron spectroscopy and zeta-potential measurements illustrated the presence of phosphonic acid group. The lowest contact angle of modified membrane was 26°, demonstrating the membrane possessed an outstandingly wettable surface. The optimal separation performance was 88 L m−2 h−1 of water flux and 99.4% of salt rejection under 1.55 MPa. In addition, bovine serum albumin was used as organic foulant to measure the antifouling property of membranes. The result of dynamic fouling experiments indicated that the modified membrane exhibited better antifouling (of which the irreversible fouling degree was 7.1%) compared with commercial membrane BW30 (of which the irreversible fouling degree was 13.5%). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46931.  相似文献   

11.
Poly(sodium styrenesulfonate)-functionalized graphene was prepared from graphene oxide, using atom transfer radical polymerization and free radical polymerization. In atom transfer radical polymerization route, the amine-functionalized GO was synthesized through hydroxyl group reaction of GO with 3-amino propyltriethoxysilane. Atom transfer radical polymerization initiator was grafted onto modified GO (GO-NH2) by reaction of 2-bromo-2-methylpropionyl bromide with amine groups, then styrene sulfonate monomers were polymerized on the surface of GO sheets by in situ atom transfer radical polymerization. In free radical polymerization route, the poly(sodium 4-styrenesulfonate) chains were grafted on GO sheets in presence of Azobis-Isobutyronitrile as an initiator and styrene sulfonate monomer in water medium. The resulting modified GO was characterized using range of techniques. Thermal gravimetric analysis, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy results indicated the successful graft of polymer chains on GO sheets. Thermogravimetric analysis showed that the amount of grafted polymer was 22.5 and 31?wt% in the free radical polymerization and atom transfer radical polymerization methods, respectively. The thickness of polymer grafted on GO sheets was 2.1?nm (free radical polymerization method) and 6?nm (atom transfer radical polymerization method) that was measured by atomic force microscopy analysis. X-ray diffractometer and transmission electron microscopy indicated that after grafting of poly(sodium 4-styrenesulfonate), the modified GO sheets still retained isolated and exfoliated, and also the dispersibility was enhanced.  相似文献   

12.
In this work polyamide thin-film composite membrane (TFC) surface modified via Michael addition grafting of a hydrophilic hyperbranched poly(amine ester). For this purpose, amine-rich polyamide layer formed by interfacial polymerization on a polyethersulfone support, and then acrylated hyperbranched poly(amine ester) (AC-HBPAE) was used as grafting moiety. The membrane surface was characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and water contact angle techniques. Field emission scanning electron microscopy (FE-SEM) was used to evaluate surface and cross-section morphology of samples. Filtration performances and bio-fouling resistance were also studied using a nanofiltration cell. Surface chemical composition and contact angle indicated the successful grafting of acrylated poly(amine ester) to the membrane surface. The results also indicated there is a solid relationship between acrylation percentage of hyperbranched polymer and membrane properties such as fouling resistance. A uniform and hydrophilic surface observed for TFC membrane modified with 5% acrylated hyperbranched poly(amine ester).  相似文献   

13.
A novel phosphorus-containing polyhedral oligomeric silsesquioxane functionized graphene oxide(P-POSS-GO) were achieved and the resultant functionized GO combined with 4 wt% P-POSS were incorporated into bismaleimide resin to prepare flame-retardant P-POSS-GO/P-POSS/DBMI composite. Fourier-transform infrared spectra, transmission electron spectroscopy and X-ray diffraction were employed to examine the efficiency of surface functionalization of GO. The composite containing P-POSS and modified GO exhibited excellent flame-retardant property and better thermal stability as well as high mechanical property. With the incorporation of 0.6 wt% P-POSS-GO and 4 wt% P-POSS to DBMI, satisfied flame retardant grade V-0 and LOI as high as 39.4 were obtained. The increase of degradation activation energy could be internal reason for the improvement of flame retardancy. Besides, P-POSS-GO can facilitate the growth of oxygen insulation and heat insulation char layer, which could be outer reason for the improvement of flame retardancy.  相似文献   

14.
Chopped aramid fiber was modified by an argon low‐temperature plasma treatment to enhance the interfacial strength of aramid paper. The water contact angle of the aramid fiber and the tensile strength, tearing strength, and evenness of the aramid sheets were investigated under different conditions, and the parameters of the argon low‐temperature plasma modification, like gas pressure, discharge power, and discharge time, were optimized. The chemical structure and surface morphology of the fiber after plasma modification were characterized by X‐ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy. The strengthening mechanism of aramid paper by low‐temperature plasma modification was also studied. It was found that the argon low‐temperature plasma treatment introduced some new polar groups onto the fiber surface and increased the fiber surface wettability and roughness. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45215.  相似文献   

15.
采用氨气等离子体对芳纶表面进行改性,用X-射线光电子能谱、场发射扫描电子显微镜、力学性能测试等手段对改性前后纤维表面的元素组成、形貌及其拉伸强度进行表征,并进一步通过微脱黏方法分析了等离子体处理条件对芳纶/环氧树脂复合材料界面黏结强度的影响。结果表明:芳纶经表面改性后,其表面极性官能团、表面粗糙度均有所增加,同时与环氧树脂基体的界面黏结强度明显增加。  相似文献   

16.
The mutual irradiated aramid fibers in 1,4‐dichlorobutane was ammoniated by ammonia/alcohol solution, in an attempt to improve the interfacial properties between aramid fibers and epoxy matrix. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), dynamic contact angle analysis (DCA), interfacial shear strength (IFSS), and single fiber tensile testing were carried out to investigate the functionalization process of aramid fibers and the interfacial properties of the composites. Experimental results showed that the fiber surface elements content changed obviously as well as the roughness through the radiation and chemical reaction. The surface energy and IFSS of aramid fibers increased distinctly after the ammonification, respectively. The amino groups generated by ammonification enhanced the interfacial adhesion of composites effectively by participating in the epoxy resin curing. Moreover, benefited by the appropriate radiation, the tensile strength of aramid fibers was not affected at all. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44924.  相似文献   

17.
A series of conductive nanocomposites cellulose/reduced graphene oxide/polyaniline (cellulose/RGO/PANi) were synthesized via in situ oxidative polymerization of aniline on cellulose/RGO with different RGO loading to study the effect of RGO on the properties of nanocomposites. The results showed that when RGO is inserted into cellulose/PANi structure, its thermal stability and conductivity are increased. So that adding of only 0.3 wt% RGO into the cellulose/PANi structure, its conductivity is increased from 1.1 × 1 10?1 to 5.2 × 110?1 S/cm. Scanning electron microscopy results showed that the PANi nanoparticles are formed a continuous spherical shape over the cellulose/RGO template; this increases the thermal stability of nanocomposite.  相似文献   

18.
针对塑料换热管传热性能不佳的问题,采用界面聚合法,以间苯二胺(MPD)为水相单体,均苯三甲酰氯(TMC)为有机相单体,对聚丙烯(PP)中空纤维换热管疏水性外表面进行局部亲水性改性,以形成呈"孤岛"分布的亲水性聚酰胺层,从而构建蒸汽冷凝用亲-疏水性组合表面。在此基础上,研究改性PP换热管强化蒸汽冷凝传热效果。换热管改性后,蒸汽冷凝总传热系数K高达2 295 W/(m2·K),较未改性前提高了87.29%。可见,PP中空纤维换热管外表面界面聚合改性,能够显著强化蒸汽冷凝传热性能。  相似文献   

19.
A new composite hollow fiber ultrafiltration (UF) membrane was prepared with the interfacial polymerization method. A dense layer of polyvinyl alcohol (PVA) was coated on the surface and embedded into the pores of the support polysulfone (PSf) membrane through a dead‐end filtration process and cross‐linked reaction with diisocyanate (TDI) at room temperature. The surface morphology and functional groups of the composite membrane were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Fourier transformation infrared spectrometer (FTIR). Anti‐fouling experiments were conducted to study the hydrophilicity and anti‐fouling properties of the support and composite membranes. The performances of the composite membrane were significantly influenced by preparation conditions. The composite membrane that performed most efficiently was prepared at an optimal condition: 30 min of dead‐end filtration, 0.25 wt% of PVA, 0.50 vol% of TDI, and 60 sec of interfacial reaction. Laboratory scale tests demonstrated that the new composite PVA/PSf membrane has a higher anti‐fouling capability and higher flux for oily wastewater treatment. The hydrophilic groups (? OH) enriched in the PVA molecules on the composite surface could play an important role for the improvement of the anti‐fouling property and the enhancement of flux recovery rate of the composite membrane. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

20.
In this study, poly(methyl methacrylate)/p-phenylenediamine-graphene oxide, poly(methyl methacrylate)/graphene, and poly(methyl methacrylate)/graphene oxide nanocomposite series were prepared using simple solution blending technique. In poly(methyl methacrylate)/p-phenylenediamine-graphene oxide series, graphene oxide modified with p-phenylenediamine was used to improve its dispersion and interfacial strength with matrix. Morphology study of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide nanocomposite revealed better dispersion of p-phenylenediamine-graphene oxide flakes and gyroid patterning of poly(methyl methacrylate) over the filler surface. Due to nonconducting nature of graphene oxide, there was no significant variation in the thermal or electrical conductivity of these nanocomposites. Thermal conductivity of poly(methyl methacrylate)/p-phenylenediamine-graphene oxide 1.5 was 1.16 W/mK, while the electrical conductivity was found to be 2.3 × 10?3 S/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号