共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of non-uniform height rectangular fin, in which the variation of base’s thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance (DMTR) and the dimensionless equivalent thermal resistance (DETR) defined based on the entransy dissipation rate (EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins. 相似文献
2.
Analogizing with the definition of thermal efficiency of a heat exchanger,the entransy dissipation efficiency of a heat exchanger is defined as the ratio of dimensionless entransy dissipation rate to dimensionless pumping power of the heat exchanger.For the constraints of the total tube volume and total tube surface area of the heat exchanger,the constructal optimization of an H-shaped multi-scale heat exchanger is carried out by taking entransy dissipation efficiency maximization as optimization objective,and the optimal construct of the H-shaped multi-scale heat exchanger with maximum entransy dissipation efficiency is obtained.The results show that for the specified total tube volume of the heat exchanger,the optimal constructs of the first order T-shaped heat exchanger based on the maximizations of the thermal efficiency and entransy dissipation efficiency are obviously different with the lower mass flow rates of the cold and hot fluids.For the H-shaped multi-scale heat exchanger,the entransy dissipation efficiency decreases with the increase in mass flow rate when the heat exchanger order is fixed;for the specified dimensionless mass flow rate M(M<32.9),the entransy dissipation efficiency decreases with the increase in the heat exchanger order.The performance of the multi-scale heat exchanger is obviously improved compared with that of the single-scale heat exchanger.Moreover,the heat exchanger subjected to the total tube surface area constraint is also discussed in the paper.The optimization results obtained in this paper can provide a great compromise between the heat transfer and flow performances of the heat exchanger,provide some guidelines for the optimal designs of heat exchangers,and also enrich the connotation of entransy theory. 相似文献
3.
A strip laminar cooling process is investigated in this paper. Entransy theory and generalized constructal optimization are introduced into the optimization. Total water flow amount(WFA) in the laminar cooling zone(LCZ) and complex function are taken as the constraint and optimization objective, respectively. The entransy dissipation(ED) and maximum temperature different(MTD) of the strip are simultaneously considered in the complex function. WFA distributions of the headers in the LCZ are optimized. The effects of the total WFA, strip thickness and cooling water temperature on the optimal results are analyzed.The optimal cooling scheme is the eleventh cooling mode for the considered total 257 cooling schemes, and the complex function,ED and MTD of the strip are decreased by 11.59%, 5.59% and 17.58% compared with the initial cooling scheme, respectively.The total WFA and strip thickness have the obvious influences on the optimal cooing scheme, but the cooling water temperature has no influence in the parameter analysis range of this paper. The “generalized optimal construct” derived by minimum complex function shows a compromise between the energy retention and quality of the strip. 相似文献
4.
Based on constructal theory and entransy theory,a generalized constructal optimization of a solidification heat transfer process of slab continuous casting for a specified total water flow rate in the secondary cooling zone was carried out.A complex function was taken as the optimization objective to perform the casting.The complex function was composed of the functions of the entransy dissipation and surface temperature gradient of the slab.The optimal water distribution at the sections of the secondary cooling zone were obtained.The effects of the total water flow rate in the secondary cooling zone,casting speed,superheat and water distribution on the generalized constructal optimizations of the secondary cooling process were analyzed.The results show that on comparing the optimization results obtained based on the optimal water distributions of the 8 sections in the secondary cooling zone with those based on the initial ones,the complex function and the functions of the entransy dissipation and surface temperature gradient after optimization decreased by 43.25%,5.90%and 80.60%,respectively.The quality and energy storage of the slab had obviously improved in this case.The complex function,composed of the functions of the entransy dissipation and surface temperature gradient of the slab,was a compromise between the internal and surface temperature gradients of the slab.Essentially,it is also the compromise between energy storage and quality of the slab.The"generalized constructal optimization"based on the minimum complex function can provide an optimal alternative scheme from the point of view of improving energy storage and quality for the parameter design and dynamic operation of the solidification heat transfer process of slab continuous casting. 相似文献
5.
Thermal designs for microchannel heat sinks with laminar flow are conducted numerically by combining constructal theory and entransy theory. Three types of 3-D circular disc heat sink models, i.e. without collection microchannels, with center collection microchannels, and with edge collection microchannels, are established respectively. Compared with the entransy equivalent thermal resistances of circular disc heat sink without collection microchannels and circular disc heat sink with edge collection microchannels, that of circular disc heat sink with center collection microchannels is the minimum, so the overall heat transfer performance of circular disc heat sink with center collection microchannels has obvious advantages. Furthermore, the effects of microchannel branch number on maximum thermal resistance and entransy equivalent thermal resistance of circular disc heat sink with center collection microchannels are investigated under different mass flow rates and heat fluxes. With the mass flow rate increasing, both the maximum thermal resistances and the entransy equivalent thermal resistances of heat sinks with respective fixed microchannel branch number all gradually decrease. With the heat flux increasing, the maximum thermal resistances and the entransy equivalent thermal resistances of heat sinks with respective fixed microchannel branch number remain almost unchanged. With the same mass flow rate and heat flux, the larger the microchannel branch number, the smaller the maximum thermal resistance. While the optimal microchannel branch number corresponding to minimum entransy equivalent thermal resistance is 6. 相似文献
6.
It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditioning system. The progress of entransy analysis in the air-conditioning system is comprehensively investigated in the present study. Firstly missions and characteristics of the air-conditioning system are analyzed with emphasis on heat or mass transfer process. It is found that reducing the temperature difference, i.e. reducing the entransy dissipation helps to improve the performance. Entransy dissipations and thermal resistances of typical transfer processes in the air-conditioning system are presented. Characteristics of sensible heat transfer process and coupled heat and mass transfer processes are researched in terms of entransy dissipation analysis. Reasons leading to entransy dissipation are also clarified with the help of unmatched coefficient ξ. Principles for reducing the entransy dissipation and constructing a high temperature cooling system are summarized on the basis of case studies in typical handling processes. It's recommended that reducing mixing process, improving match properties are main approaches to reduce the entransy dissipation. The present analysis is beneficial to casting light on the essence of the air-conditioning system and proposing novel approaches for performance optimization. 相似文献
7.
Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimization using the extremum principle of entransy dissipation. Then, the electromagnet working at steady state (constant magnetic field, constant heat generating rate per unit volume) is optimized for entransy dissipation minimization (i.e. mean temperature difference minimization) with and without vo... 相似文献
8.
孙凯 《北京机械工业学院学报》2005,20(3):56-58
对博弈论中两个重要概念进行辨析,以达到正确的理解和应用。首先,指出了著名的《微观经济理论》中对于弱优超策略定义的矛盾之处,提出并证明,对于一个博弈者来说,不会存在两个弱优超策略。其次,归纳整理了颤抖手完美的性质,结合实例回答了为什么要提出颤抖手完美这个概念,以及怎样应用这个概念。 相似文献
9.
CHEN Lin Gen 《中国科学:技术科学(英文版)》2014,(12)
The mass entransy and its dissipation extremum principle have opened up a new direction for the mass transfer optimization. Firstly, the emergence and development process of both the mass entransy and its dissipation extremum principle are reviewed. Secondly, the combination of the mass entransy dissipation extremum principle and the finite-time thermodynamics for optimizing the mass transfer processes of one-way isothermal mass transfer, two-way isothermal equimolar mass transfer, and isothermal throttling and isothermal crystallization are summarized. Thirdly, the combination of the mass entransy dissipation extremum principle and the constructal theory for optimizing the mass transfer processes of disc-to-point and volume-to-point problems are summarized. The scientific features of the mass entransy dissipation extremum principle are emphasized. 相似文献
10.
从中国覆盖率最高的网—有线电视的 HFC 网出发,介绍了其接入优势和网络结构;基于 Cable Modem 技术,分析了实现电信网、计算机网、电视网三网合一的理论基础. 相似文献
11.
从中国覆盖率最高的网——有线电视的HFC网出发,介绍了其接入优势和网络结构;基于CableModem技术,分析了实现电信网、计算机网、电视网三网合一的理论基础. 相似文献
12.
Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems. 相似文献
13.
In this paper, the performance of a concentrating photovoltaic/thermal solar system is numerically analyzed with a mathematical and physical model. The variations of the electrical efficiency and the thermal efficiency with the operation parameters are calculated. It is found that the electrical efficiency increases at first and then decreases with increasing concentration ratio of the sunlight, while the thermal efficiency acts in an opposite manner. When the velocity of the cooling water increases, the electrical efficiency increases. Considering the solar system, the surface of the sun, the atmosphere and the environment, we can get a coupled energy system, which is analyzed with the entropy generation minimization and the entransy theory. This is the first time that the entransy theory is used to analyze photovoltaic/thermal solar system. When the concentration ratio is fixed, it is found that both the minimum entropy generation rate and the maximum entransy loss rate lead to the maximum electrical output power, while both the minimum entropy generation numbers and the maximum entransy loss coefficient lead to the maximum electrical efficiency. When the concentrated sunlight is not fixed, it is shown that neither smaller entropy generation rate nor larger entransy loss rate corresponds to larger electrical output power. Smaller entropy generation numbers do not result in larger electrical efficiency, either. However, larger entransy loss coefficient still corresponds to larger electrical efficiency. 相似文献
14.
The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR. 相似文献
15.
为弥补传统资本结构的缺陷,提升企业价值,采用规范研究、对比分析、定性和定量分析相结合的方法,从代理理论的视角,引入经营者人力资本.根据股东、债权人和经营者之间的制约关系,构建了三元资本结构体系,分析了新体系下资本结构的优化,提出动态优化资本结构的相应建议.研究认为,经营者人力资本对理顺资本结构关系十分重要,优化的资本结构应涵盖人力资本;而且,均衡动态的资本结构优化,还需要政府的支持和企业的努力. 相似文献
16.
The electrical power generation from low temperature heat source attracts more and more attentions but the temperature mismatching between the heat sources and working medium in the organic Rankine cycle(ORC)becomes an issue.The organic flash cycle(OFC)is an effective solution to this issue.In this paper,the OFC is analyzed by the concept of entransy loss and the T-Q(temperature-heat flow rate)diagram for the heat-work conversion.The equations for cycles of the basic OFC and the OFC whose heat source is the exhaust gas of the turbine in a Brayton cycle(the combined cycle)are derived theoretically and the results indicate that larger entransy loss rate leads to larger output power with prescribed inlet parameters of the hot stream in the discussed cases,which is displayed by the T-Qdiagram intuitively.Two numerical examples demonstrate that the optimal mass flow rate of the working medium for the maximum entransy loss rate is the same as that for the maximum output power.The T-Qdiagram analyses is in accordance with the numerical results.The concept of entransy loss can be used as the criteria for the OFC optimization. 相似文献
17.
Application of entransy dissipation extremum principle in radiative heat transfer optimization 总被引:1,自引:0,他引:1
The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extremum principle are presented. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB206901) 相似文献
18.
The entransy dissipation extremum principle provides new warranty and criterion for optimization of heat transfer. For two
cases (body with heat generation and body heated externally) of a solid conducting wall with an open cavity, a dimensionless
equivalent thermal resistance based on entransy dissipation definition was taken as the optimization objective to optimize
the model constructal geometry. Numerical results validated the necessity and feasibility of the presented method. Comparisons
of the numerical results based on minimization of dimensionless maximum thermal resistance and minimization of dimensionless
equivalent thermal resistance, respectively, showed that there was no obvious difference between the two results when the
volume fraction Φ occupied by cavity was small, but the difference between the two results increased with the increases of Φ and the body aspect ratio H/L for any model. The optimal cavities for bodies heated externally were more slender than those for bodies with heat generation.
Heat origin had obvious effect on the global performance of heat transfer. The entransy dissipation of body heated externally
increased 2–3 times than that of body with heat generation, indicating that the global performance of heat transfer weakened.
The method presented herein provides some guidelines for some relevant thermal design problems. 相似文献
19.
《中国科学:技术科学(英文版)》2012,(12):3322-3333
Analogizing with the heat conduction process, the entransy dissipation extremum principle for thermal insulation process can be described as: for a fixed boundary heat flux (heat loss) with certain constraints, the thermal insulation process is optimized when the entransy dissipation is maximized (maximum average temperature difference), while for a fixed boundary temperature, the thermal insulation process is optimized when the entransy dissipation is minimized (minimum average heat loss rate). Based on the constructal theory, the constructal optimizations of a single plane and cylindrical insulation layers as well as multi-layer insulation layers of the steel rolling reheating furnace walls are carried out for the fixed boundary temperatures and by taking the minimization of entransy dissipation rate as optimization objective. The optimal constructs of these three kinds of insulation structures with distributed thicknesses are obtained. The results show that compared with the insulation layers with uniform thicknesses and the optimal constructs of the insulation layers obtained by minimum heat loss rate, the optimal constructs of the insulation layers obtained by minimum entransy dissipation rate are obviously different from those of the former two insulation layers; the optimal constructs of the insulation layers obtained by minimum entransy dissipation rate can effectively reduce the average heat loss rates of the insulation layers, and can help to improve their global thermal insulation performances. The entransy dissipation extremum principle is applied to the constructal optimizations of insulation systems, which will help to extend the application range of the entransy dissipation extremum principle. 相似文献
20.
为研究城市冥想空间在复愈性环境下的设计特征,本文一方面通过对冥想、冥想空间、城市冥想空间的概念作出诠释,另一方面通过对复愈性环境理论中的恢复注意力理论进行初步分析研究,以此总结归纳出城市冥想空间的3个设计要点,即简洁性、静谧性、叙事性,最后以西安城南某段城墙旧址作为该城市冥想空间的最终方案设计实践.另外,有关城市冥想空... 相似文献