首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With completion of the sequencing of the human and mouse genomes, the primary sequences of close to 400 non-olfactory G protein-coupled receptors (GPCRs) have been determined. There are intensive efforts within the pharmaceutical industry to discover and develop new therapeutic agents acting via GPCRs. In addition, there is a concerted effort to identify potential new drug targets from the remaining 150+orphan GPCRs through the identification of their ligands. Access to functionally expressed recombinant receptors underpins both of these key drug discovery activities. Typically, GPCR drug discovery screening activities are carried out using mammalian cell lines stably expressing the target of interest. The influx of new receptor sequences originating from genomic sequencing efforts has caused a shift toward wider applications of transient rather than stable expression systems, especially in support of assays for orphan receptor ligand screening. Recombinant baculoviruses in which the polyhedrin promoter has been replaced with a mammalian promoter, termed BacMam viruses, were originally designed as potential new gene therapy delivery vehicles. This same technology offers numerous advantages as a transient expression system in the assay of membrane-expressed drug targets, including GPCRs. Data presented show that BacMam can be used rapidly to generate robust and pharmacologically authentic GPCR assays in several formats, with the potential to transform drug discovery screening processes for this gene family.  相似文献   

2.
A variety of transfection approaches have been used to deliver plasmids encoding ion channel genes into cells. We have used the baculovirus transduction system, BacMam, to demonstrate transient expression of multi-subunit KATP channels in CHO-K1 and HEK-293 EBNA cells using sulfonylurea receptor 1 (SUR), SUR2A, SUR2B, and KIR 6.2 genes. [3H]-glyburide binding, patch clamp, and DiBAC4(3) measurements of membrane potential changes were used to monitor channel expression. BacMam delivery of each SUR isoform with KIR6.2 was demonstrated based on its pharmacological profiles. Expression levels of SUR1 and KIR6.2 were titrated by varying the viral concentration or time of virus addition, with functional activity measured in as little as 4-6 hours posttransduction. Further increases in BacMam virus induced sufficient KATP expression to dominate membrane potential without pharmacological opening of the channel. Independently altering treatment with virus containing either the SUR1 or KIR6.2 gene revealed interactions among subunits during formation of functional channels in the plasma membrane. This study demonstrates the utility and versatility of BacMam as a valuable gene delivery tool for the study of ion channel function.  相似文献   

3.
Agonist-dependent internalization is an important phase of beta 2-adrenergic receptor (beta 2AR) regulation. Recent reports have indicated that early steps of beta 2AR endocytosis may involve mechanisms different from those which regulate the internalization of constitutively recycling receptors, such as transferrin receptor (TfR). In the present study, we addressed this issue by comparing, in the same cells, the endocytic pathway of beta 2AR with that of the TfR. Upon incubation at 15 degrees C, activated beta 2ARs accumulated in peripheral endosomes of HEK-293 cells while they were targeted to perinuclear organelles at 37 degrees C. The temperature block was not specific to beta 2ARs, since both peripheral and perinuclear beta 2AR-containing endosomes comigrated on sucrose gradients with those containing transferrin receptors and were loaded with horseradish peroxidase-coupled transferrin. Endocytosis of beta 2ARs was saturable in HEK-293 cells and did not increase upon overexpression of beta-arrestin 1. TfR endocytosis was unaffected by the simultaneous internalization of overexpressed beta 2AR, indicating that the limiting components which regulate endocytosis of these two receptors are different. In conclusion, ligand activated beta 2AR and constitutively recycling receptors, such as TfR, enter the endocytic pathway via distinct saturable mechanisms but converge in the same endosomal compartments. Our results also indicate that a still unidentified component(s) controls beta 2AR endocytosis.  相似文献   

4.
Yeast assays for G-protein-coupled receptors   总被引:3,自引:0,他引:3  
Yeast assays for G-protein-coupled receptors have many attractions due to their simplicity, low cost, and lack of endogenous receptors. Since the first report of functional coupling of the human beta 2 adrenergic receptor to the yeast pheromone-response pathway in 1990, the technology has developed to a point at which more than 30 heterologous GPCRs are now published to couple. Major breakthroughs have come from an understanding of receptor-G protein interactions, alongside advances in knowledge of the structure of heterotrimeric G proteins. Yeast screens have been used to identify ligands both from compound collections and through the autocrine expression of peptide libraries. Yeast genetics has also been applied to a functional analysis of GPCRs and peptide ligands. In this review we describe the historical development of yeast GPCR assay systems and their current applications.  相似文献   

5.
Extracellular vesicles (EVs) are widely used as natural nanoparticles to deliver various cargos for disease diagnosis and therapy. However, unmodified EVs cannot efficiently transport the cargos to desired sites due to non-specific uptake. Here, a delivery system is designed to display nanobodies against cadherin 17 (CDH17) on the surface of EVs isolated from HEK-293 cells and loaded with dye Indocyanine green (ICG) and/or anti-cancer drug dinitroazetidine derivative RRx-001, a blocker for CD47/ signal regulatory protein alpha (SIRPα) axis. CDH17 is a promising target for gastric cancer (GC) therapy. In this study, ICG loaded in the EVs engineered with CDH17 nanobodies can realize rapid tumor imaging in a CDH17-positive GC model and can produce significant anti-tumor photothermal therapeutic (PTT) effect after irradiation. Meanwhile, PTT effect can induce immunogenic cell death and macrophage polarization from M2 to M1 phenotype. The engineered EVs loaded with RRx-001 can significantly repress GC tumor growth. Finally, dual loading of ICG/RRx-001 in engineered EVs show maximal anti-tumor efficacy in both cancer cell and patient-derived GC models after only single injection. Collectively, CDH17 nanobody-functionalized EVs loaded with ICG and/or RRx-001 hold great promise to image and treat GC by combining fluorescent dye-induced PTT with chemotherapy.  相似文献   

6.
The superfamily of G protein-coupled receptors (GPCRs; 7TMs) is one of the largest families of genes identified in humans, and has a proven history of being an excellent source of drug targets. The near completion of the human genome sequencing project has allowed the identification of a plethora of sequences encoding "orphan" GPCRs--putative receptors whose natural ligand(s) remain to be discovered. In many cases, the level of sequence homology with known receptors is insufficient to be able to predict the natural ligand for these orphan receptors, although it is usually possible to determine the likely nature of the cognate ligand e.g. peptide, lipid, nucleotide etc. Deorphanizing these novel GPCRs and evaluating their biological function has become a major target of many of the major pharmaceutical companies as well as several academic groups. Since 1995 more than 50 ligands for orphan GPCRs have been discovered by using the orphan receptor as a biosensor and screening candidate compounds looking for a biological response (the so-called "reverse pharmacology" approach). Identification of the natural ligands for these receptors marks the beginning of the process of understanding the biology of these newly discovered signalling systems and the development of novel therapies targeted at them. This article will focus on the functional assays which have been used to discover ligands for orphan GPCRs.  相似文献   

7.
Heteromeric glycine receptors mediate synaptic inhibition in the caudal areas of the adult mammalian central nervous system (CNS). These channels resemble other receptors in the nicotinic superfamily in that they are pentamers, but may differ in that they contain alpha and beta subunits in a 3:2 rather than a 2:3 ratio. Evidence in favor of a 3alpha:2beta stoichiometry of heteromeric glycine receptors comes from biochemical data and from the expression of chimeric subunits. We investigated this question using a potentially more direct approach and mutated the highly conserved hydrophobic residues in the middle (position 9') of the pore-lining domain. This mutation increases agonist potency in all channels in the nicotinic superfamily and its effects are in first approximation proportional to the number of mutant subunit incorporated into the receptor. We expressed in HEK 293 cells wild-type glycine alpha1beta receptors or receptors bearing the 9' mutation on either the alpha or the beta subunit, using an alpha:beta plasmid ratio of 1:40 in the transfection. This resulted in negligible levels of contamination by homomeric alpha1 receptors, as proven by low picrotoxin potency and by the extreme rarity of high conductances in single channel recording. Our data show that the effects of the 9' mutation on the receptor sensitivity to glycine were more marked when the alpha subunit bore the mutation. The magnitude of the leftward shift in the agonist dose-response curve for the two mutant combinations was in agreement with a subunit stoichiometry of 3alpha:2beta.  相似文献   

8.
目的构建含有信号肽及FLAG标签的人前列腺干细胞抗原(PSCA)真核表达载体,并在人胚肾293T细胞中进行表达。方法通过PCR方法获得SIG-FLAG基因片段及人PSCA基因片段,插入到真核表达载体pIRES-neo中。构建的重组质粒pIRES-neo-sig-FLAG-PSCA转染293T细胞,利用流式细胞仪、免疫荧光及RT-PCR方法检测其表达情况。结果PCR扩增出的SIG-FLAG及PSCA基因测序正确,酶切鉴定证明重组质粒pIRES-neo-sig-FLAG-PSCA构建成功;检测结果显示重组质粒pIRES-neo-sig-FLAG-PSCA在293T细胞中得到表达。结论成功构建了重组质粒pIRES-neo-sig-FLAG-PSCA,且在293T细胞中能有效表达,为后续转人PSCA基因细胞系的构建工作奠定了基础。  相似文献   

9.
Rhodopsin is the dim-light activated photoreceptor located in the rod cells of the eye. It belongs to the large superfamily of G-protein-coupled receptors (GPCRs). Many consider it the proto-typical GPCR as numerous studies since its cloning in 1983 (Nathans and Hogness 1983) have established many fundamental principles of seven transmembrane-spanning GPCRs. Abundant expression in the rod's outer segment, constituting about 90% of the total membrane protein in the discs, and the development of techniques to purify large quantities of functional protein has facilitated this process. Another distinct feature is rhodopsin's ligand, 11-cis-retinal, which is covalently bound via a Schiff base to transmembrane seven (TM VII), allowing extensive spectroscopic studies. Exciting recent developments include the discovery of naturally occurring mutations that lead to retinal degeneration, the determination of transmembrane movements using electron paramagnetic resonance (EPR) and biochemical techniques, and the discovery of its 3D X-ray crystal structure, the first among GPCRs. The impact of these major advances will be discussed in this review.  相似文献   

10.
The techniques of pre- and post-embedding immunocolloidal gold electron microscopy were tested for their usefulness for analyzing the morphogenesis of human immunodeficiency virus (HIV) strain LAV employing U-937 cells persistently infected with the virus (U-937/LAV). By both techniques the following results were obtained. (1) Budding process was restricted to a localized area at the membrane adjacent to the Golgi apparatus. (2) The distribution of viral envelope antigens was restricted to the electron-dense crescent structures on the cell surface. (3) Virions released from the cells could be classified mainly into 2 categories: virions with doughnut-shaped cores or with conical cores at the center of the particles. And p24 proteins localized on the thick electron-dense cores of both types. These findings support the idea that pre- and post-embedding immunogold electron microscopy is very useful for studying the morphogenesis of viruses.  相似文献   

11.
目的:构建含有人二型大麻素受体(CB2)基因的真核表达载体,并实现其在HEK293细胞的表达。方法:首先采用PCR方法从含有CB2基因的质粒pcDNA3.1(+)-CB2中扩增获得人的CB2基因,再采用基因重组技术将CB2的DNA片段插入真核表达载体pIRES2-EGFP。将获得的pIRES2-EGFP-CB2重组子转染HEK293细胞,应用荧光显微镜观察EGFP的表达情况,RT-PCR和报告基因检测CB2的表达情况。结果:酶切和测序结果验证真核表达载体pIRES2-EGFP-GB2构建成功。可在荧光显微镜下观察到转染HEK293细胞表达的绿色荧光;RT-PCR和双荧光素酶报告基因法检测证明CB2蛋白在真核细胞中成功表达;CB2受体激动剂JWH-015能显著逆转腺苷酸环化酶激动剂forskolin诱发的荧光素酶活性增加。结论:成功构建了真核表达载体pIRES2-EGFP-CB2,为进一步研究CB2基因的生理学和病理生理学功能及调控机制奠定了实验基础。  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the most common cancers. Maternally expressed gene 3 (MEG3, one kind of long noncoding RNA [lncRNA]) can act as a tumor suppressor and regulate P53 target gene expression. However, lncRNA MEG3 demonstrates relatively low or no expression in human HCC. This study provides a promising concept to codeliver lncRNA and pDNA for cancer therapy. As proof‐of‐concept, the pcDNA‐MEG3 and pcDNA‐P53 plasmids‐condensed nanocomplexes with the liver‐targeting polycation gene vector, pullulan‐based ethanolamine‐modified poly(glycidyl methacrylate) (denoted as PuPGEA), are proposed to codeliver lncRNA and pDNA to treat HCC. Pullulan‐containing nanovectors are shown to be able to effectively mediate gene delivery in liver cells. To assess gene delivery performances of PuPGEA, a series of assays such as in vitro gene transfection, HCC cell proliferation, colony formation, migration, matrigel transwell assays, and in vivo xenograft animal models are carried out. The codelivery system with PuPGEA/(MEG3+P53) nanocomplexes demonstrates additive effects in suppressing HCC compared to PuPGEA/MEG3 or PuPGEA/P53 nanocomplexes alone. These results suggest that codelivery of lncRNA and pDNA by polycation nanovectors is a promising method to treat cancers.  相似文献   

13.
目的构建下游可以共表达人白细胞介素12(hIL12)双亚基的双顺反子真核表达载体pVAX1-IRES-hIL12。方法通过搭桥PCR获得人白细胞介素12P35及P40双亚基的融合基因P35-F2A-P40,插入DNA疫苗载体pVAX1-IRES的下游,瞬时转染293-T细胞,ELISA检测融合基因的表达。结果酶切鉴定和序列分析表明融合基因与设计完全一致,融合基因在体外细胞培养液检测中获得分泌表达。结论该载体的成功构建可以为肿瘤基因疫苗研制提供免疫增效载体。  相似文献   

14.
The complex physiological environment in bone tissue poses a challenge to the efficient delivery of chemotherapeutic agents for osteosarcoma (OS) treatment; hence, an efficient drug delivery system designed for OS is highly desired. Herein, alendronate (Ale)-based cationic platinum prodrug nanoparticles (Ale NP) are developed, which exhibit cascade responsiveness to the OS tumor microenvironment. With Ale triggered bone targeting and charge reversal effects, Ale NP demonstrates superior capacity for achieving deep penetration into dense OS tissues. Furthermore, Ale NP can induce dendritic cell (DC) maturation via activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway using platinum drugs. The highly potent phenanthridine (Pt(II)) can be released in the presence of overexpressed glutathione (GSH) in tumor cells, thereby achieving dual-targeted cascade delivery of cationic platinum drugs in OS. Notably, Ale NP not only effectively eliminates the tumor in the internal region of OS but also acts as a potent STING agonist to effectively reverse the suppressive microenvironment of OS. Overall, Ale-triggered dual-cascade targeting prodrug nanoparticles significantly improve drug targeting and penetration in OS, hence paving a promising avenue for the clinical treatment of OS.  相似文献   

15.
There is a strong demand for techniques that allow the fabrication of biocompatible porous nanoparticles for drug delivery applications. In this work, a new method to fabricate size‐ and shape‐controlled porous silicon (pSi) nanodiscs is described. The process relies on a combination of colloidal lithography and metal‐assisted chemical etching. Height and diameter of the pSi nanodiscs can be easily adjusted. The nanodiscs are degradable in physiological milieu and are nontoxic to mammalian cells. In order to highlight the potential of the pSi nanodiscs in drug delivery, an in vitro investigation that involved loading of nanodiscs with the anticancer agent camptothecin and functionalization of the nanodisc periphery with an antibody that targets receptors on the surface of neuroblastoma cells is carried out. The thus‐prepared nanocarriers are found to selectively attach to and kill cancer cells.  相似文献   

16.
When Chinese hamster ovary cells transfected with the gene for M(3)-muscarinic receptors were stimulated with carbachol continuously for 30 min, the response at the end of the stimulation period was about 20% of the early response (2-3 min after the start of the stimulation). Long-term treatment of the cells with phorbol ester abolished the response completely while desensitization was significantly reduced upon pre-treatment of the cells with GF109203X, antisense oligonucleotide against the alpha-isoform of protein kinase C and wortmannin. We conclude that in the Chinese hamster ovary expression system, desensitization of M(3)-muscarinic receptors is dependent on a fast feedback loop including the alpha-isoform of protein kinase C.  相似文献   

17.
We compared adenylyl cyclase (AC) activation by the G protein-coupled human serotonin (5-HT) receptors 5-HT4(b) and 5-HT7(a) using an ecdysone-inducible expression system, which allowed for reproducible expression of increasing receptor densities in clonal HEK293 (EcR293) cell lines. Low constitutive expression of receptors (2-70 fmol/mg protein) was observed and could be titrated up to 50-200-fold (approximately 400-7000 fmol/mg protein) by the ecdysone analogue ponasterone A. Although 5-HT-stimulated AC activity increased with receptor density, interclonal variation precluded comparisons of coupling efficiency. Interestingly, the potency of 5-HT to stimulate AC increased with increasing receptor density only in clones expressing 5-HT4(b) receptors. The potency for 5-HT did not change in clones expressing 5-HT7(a) receptors, even though 5-HT-stimulated AC activity approached asymptotic levels. This indicates that potency of 5-HT for stimulation of AC through the 5-HT7(a) receptor is independent of receptor-Gs stoichiometry and is consistent with a model where the 5-HT7(a) receptors are tightly associated with G protein, independent of agonist binding. This supports the existence of a complex between inactive receptor and G protein, as predicted by the cubic ternary complex model. In such a system, spare receptors do not lead to increased potency of an agonist with increased receptor density.  相似文献   

18.
Targeted delivery of drug-loaded nanoparticles to brain tumors is exceptionally difficult due to the blood-brain barrier (BBB). In addition, several chemotherapeutic drugs induce autophagy, which protects the cells from apoptosis and mitigates the therapeutic effect. A novel “all-in-one” nanoparticles (AMPTL) consisting of endogenous reactive oxygen species-cleavable thioketal linkers conjugated to paclitaxel (PTX) and autophagy inhibitor 3-methyladenine, and angiopep-2 peptide-modified DSPE-PEG2K is developed. AMPTL inhibits autophagy in the C6 glioma cells, as indicated by fewer autophagic vesicles, lower LC3-II expression and accumulation of SQSTM1/P62, and significantly upregulates p53 and the pro-apoptotic Bax and cleaved caspase-3 proteins. In addition, AMPTL treatment induces cell cycle arrest at the G2/M phase. Thus, inhibition of autophagy in the AMPTL-treated glioma cells sensitizes them to PTX-induced cell cycle arrest and apoptosis. Furthermore, focused pulse ultrasound and microbubbles enhances the delivery of AMPTL to intracranial glioma tissues by reversibly opening the BBB, which significantly inhibits xenograft growth and markedly improves survival rates of the tumor-bearing mice. Taken together, combining non-invasive BBB opening with autophagy inhibitors and chemotherapeutic drugs can achieve cascade-amplifying synergistic therapeutic effects against glioma.  相似文献   

19.
Human homomeric and heteromeric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors (GluRs) were stably expressed in HEK293 cells with cDNAs encoding the flip splice variant of GluR1, GluR2, GluR3, GluR4 subunit, and the GluR1/GluR2, GluR3/GluR2, and GluR4/GluR2 combination. The lethal combination of GluR2 and GluR4 subunits was found in high expression levels of both receptors. The AMPA-evoked current voltage relationships demonstrated the functional channel properties, such as a double rectification in GluR1, GluR3, and GluR4 receptors, and a linear relation in receptors assembled from GluR2 alone and coexpression of GluR2 with the other subunits. All the transfectants exhibited higher selectivity for AMPA than glutamate in dose-dependent current responses. [3H]AMPA binding revealed that the homomeric and heteromeric receptors displayed a single binding site in Scatchard analysis, with dissociation constant (Kd) values in the range of 14.5-49.3 nM. The Bmax values were in the range of 0.57-7.66 pmol/mg protein. The ligand displacement potency for [3H]AMPA binding was CNQX > glutamate > NS257 in all of the transfectants. These results suggest that stable transformants expressing human homomeric and heteromeric AMPA receptors will be useful tools to define selectivity and potential site of action for AMPA receptor modulators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号