共查询到15条相似文献,搜索用时 78 毫秒
1.
在污泥的热处置过程中,添加剂的存在会改变污泥中的磷形态从而对后续磷的回收利用产生重大影响。本文综合利用化学连续提取(SMT方法)、SEM-EDS、XRD和ICP-MS等分析测试方法,系统研究了CaCl2在水热炭化过程中对污泥中磷形态及其生物有效性的影响。研究结果表明,水热炭化可以使污泥中有机磷(OP)向无机磷(IP)转化,同时促进污泥中非磷灰石无机磷(NAIP)向磷灰石无机磷(AP)的转化,CaCl2的适量添加可以促进上述转化过程。经过水热炭化处理后,污泥水热炭中IP和AP的浓度分别提升了35.6%和63.4%,当添加质量分数为20%的CaCl2时,污泥水热炭中IP和AP的浓度同时达到最大值,分别为79.62mg/g和75.61mg/g。此时污泥水热炭中可溶性磷在2%CA溶液中的溶解度也达到最大的57.02mg/g,在此条件下,污泥水热炭中磷的生物有效性也达到最高。 相似文献
2.
磷(P)是生物生长必不可少的营养物质,在自然界中主要以磷酸盐矿物质形式存在。污泥作为一种富磷的固体废物,可作为二次磷资源开发利用。本文对不同热处理方式(焚烧、热解、水热炭化)中污泥的磷迁移转化规律和影响进行了综述,热处理方式不仅可以缓解磷资源危机,促进磷资源的循环利用,而且可以减少污泥带来的环境问题,并生成有价值的副产品。在此基础上,归纳了不同添加剂(配煤、生物质和碱土化合物)对污泥中磷迁移转化的行为影响规律及机制,发现添加剂的加入可以促进热处理过程中磷的富集,并改变磷的赋存形态,从而提高灰中磷的生物可利用性。 相似文献
3.
采用SMT方法研究磷在热解产物中的赋存形态和分布。结果发现,热处理促进污泥中有机磷(OP)向无机磷(IP)转化。热解温度在800℃以下时,污泥中的磷富集在热解后的污泥固体中。随热解温度升高,污泥中全磷(TP)、无机磷(IP)和磷灰石无机磷(AP)的含量均表现出逐渐升高的趋势,非磷灰石无机磷(NAIP)含量则表现出先升高再降低的趋势。热解温度升高会促使NAIP向AP转化,800℃时AP含量达到最大。污泥中NAIP的主要存在形式为磷酸铝盐和磷酸铁盐,磷酸钙盐含量随温度的升高逐渐增加。污泥中正磷酸单酯和焦磷酸盐受热转化为正磷酸盐,热解后的污泥中磷基本以正磷酸盐的形式存在。该结论为污泥的无害化、资源化利用提供了理论支持。 相似文献
4.
干化+焚烧技术已逐渐成为我国大中城市中心城区污泥的重要处置手段,水热炭化预处理可提高污泥脱水性能,进而降低系统能耗,但对水热+干化污泥预处置过程的能耗分析还鲜有报道。研究了200~260℃下水热炭化预处理污泥的三相产物分布及水热液有机组分构成,在此基础上建立了水热+空气干化系统的能量-质量流模型,并分析了水热条件对系统能耗的影响,最后与空气干化系统、厌氧发酵+空气干化系统能耗进行对比。发现釜内压力为8 MPa,水热反应温度由200℃上升至240℃时,由于水热液中热值较高的有机组分芳香烃、含氮杂环比例明显下降,水热反应釜能耗由184kJ/kg(以原污泥计)降至161 kJ/kg,温度上升至260℃时,由于水蒸气气相分率明显增加及水热液中芳香烃含量回升,能耗上升至278 kJ/kg。受水蒸气气相分率影响,240℃下水热反应能耗随压力升高而降低,压力升至4 MPa后降低趋势迅速放缓。直接空气干化系统在干化空气温度为110℃时,系统总能耗为1 942 kJ/kg;厌氧消化+干化系统由于对沼气进行高效热回收利用,消化时间为10 d时,系统热耗低至212 kJ/kg,总能耗为984 kJ/kg;而... 相似文献
5.
采用高温高压反应釜在不同温度下进行了污泥水热实验。主要考察污泥中氮元素在水热过程中的迁移转化以及水热温度的影响,并对水热过程中氮元素的迁移路径进行了系统分析。结果表明,氮元素主要分布在固相和液相产物中,并随着水热温度的升高,分布在液相产物中的氮元素逐渐增加。在水热过程中,污泥中的无机氮形态几乎全部转换为氨氮和硝酸盐氮形态;不稳定性蛋白质氮分解为有机氮和氨氮,有机氮可进一步分解为氨氮;而稳定性蛋白质可转变为吡啶氮、吡咯氮、季氮以及腈氮形态,在较高的水热温度下均可再分解为氨氮。因此,随着水热处理温度的升高,污泥中氮元素逐渐从固相中转移到液相中,在液相产物中主要以有机氮和氨氮形态赋存。 相似文献
6.
在不同温度下进行污泥水热碳化实验,利用Hedley顺序提取法探究水热炭中磷的形态变化,并结合钙、铁、铝的浸出行为进一步解释含磷物质的形态分布。结果表明,磷主要富集在水热炭中,水热碳化促进有机磷(Po)向无机磷(Pi)转化,NaOH溶解态磷(NaOH-P)转化为HCl溶解态磷(HCl-P)和残渣态(Res-P)。污泥和水热炭中Ca、Fe主要以HCl溶解态为主;Al则由NaOH溶解态转化为HCl溶解态。并且水热碳化过程促使污泥中磷形态从磷酸铝盐(Al-P)、磷酸铁盐(Fe-P)向磷酸钙盐(Ca-P)、磷酸镁盐(Mg-P)转化。通过理论分析,水热炭中Al-P可能以Al2PO43+和AlHPO4+络合物为主;羟基磷灰石是Ca-P的主要存在形态;部分磷酸盐可能被铁氧化物或氢氧化物固定。为后续水热炭的回收利用提供理论基础。 相似文献
7.
以富含磷的污泥水热炭为研究对象,用SMT法分析磷的形态分布,以盐酸和柠檬酸为浸提剂,探究湿化学法回收磷的潜能。结果表明,污泥经水热碳化后,总磷含量上升,有机磷朝着无机磷转化,非磷灰石无机磷朝着磷灰石无机磷转化,水热炭中磷形态以无机磷和非磷灰石磷为主。适宜酸浸条件下(盐酸浓度0.3 mol/L、液固比50 ml/g、酸浸时间240 min,柠檬酸浓度0.1 mol/L、液固比50 ml/g、酸浸时间600 min),盐酸和柠檬酸对磷的浸出效率分别可达94.34%、88.78%,准二级动力学模型能较好地拟合磷的浸出过程;同时,金属浸出能力随酸浸时间延长而逐渐上升,与磷浸出能力呈线性相关,由大到小依次为Fe>Ca>Al>Mg;重金属浸出能力由大到小依次为Zn>Mn>Cr>Cu>Pb;酸浸残渣有望成为性能良好的吸附材料。 相似文献
8.
为了厘清矿物质化合物对含油污泥焚烧过程中重金属迁移转化的影响规律,以胜利油田罐底含油污泥为研究对象,在水平管式炉上分别进行了含油污泥添加CaO、Fe2O3、Al2O3、MgO后的焚烧实验,对获得的焚烧底灰分别进行了重金属总量、浸出特性以及风险性分析。研究结果表明:矿物质在焚烧过程中形成的残渣对重金属均有一定的吸附作用,CaO对Cu、Cr、Pb和As的吸附效果最好,其中Cu的残留率达到93.40%。不同矿物质化合物对重金属浸出的抑制效果不同,其中Al2O3对Cr、Zn、Pb、As、Cd的浸出特性表现出了最强的抑制效果,且Zn、Pb和As的浸出率均低于5%。矿物质对重金属风险性影响的规律性不强,CaO和Al2O3对降低Zn和As的风险性效果较为显著,Zn和As生物有效态含量均低于18%。 相似文献
9.
采用水热炭化法将市政污泥与印染污泥在不同的水热温度下制备成生物炭,并着重分析了污泥生物炭的碳固定指标与水热温度的关系。结果表明,污泥泥质和水热温度对生物炭碳固定特性影响明显。市政污泥的水热炭化以脱羧为主,而印染污泥则以脱水为主。随着水热温度升高,两种生物炭中碳元素含量、炭产率和碳回收率均下降,但市政污泥生物炭中稳定碳的含量及其产率增加,稳定性提高,而印染污泥则呈现相反的变化趋势。这一结果指出,市政污泥生物炭的碳固定性能明显优于印染污泥,并且应进一步研究不同污泥泥质特征与炭化碳固定效果的关系。 相似文献
10.
11.
采用高温高压反应釜进行了污泥(SS)和高硫煤(CS)的共水热碳化实验。分别考察了混合比和温度对水热炭中硫氮元素形态转化规律的影响。研究结果表明,经过水热处理后,SS中蛋白质氮(N-A)转化为杂环类氮,CS中吡咯氮(N-5)和吡啶氮氧化物(N-X)转化为吡啶氮(N-6)和季氮(N-Q);SS与CS中硫元素逐渐转化为噻吩硫和硫酸盐。随着CS混合比例和温度的升高,水热炭中含氮芳族杂环(例如N-6、N-5和N-Q)占比增加。另外,随着CS混合比例和温度升高,水热炭中噻吩硫含量分别逐渐增加至22.61%和24.98%;升高温度提高了水热炭中硫酸盐含量,而增加CS混合比例却降低了硫酸盐含量。本研究可为后续SS和CS的资源化清洁利用提供理论基础。 相似文献
12.
利用污泥与大豆蛋白研究了不同温度下水热碳化过程中有机氮迁移转化路径和规律,氮元素全过程平衡分析结果表明随着水热碳化温度由150℃升高至240℃,焦炭中残留的氮占污泥总氮比例由68.9%下降至29.8%,焦油中由4.2%升高至35.0%,水溶液中则由18.8%提升至30.4%,含氮气体释放量低于0.02%。原污泥中蛋白质主要转化路径为通过分解转化和水解反应依次产生焦油态胺类、水溶性有机氮、NH3和NH ,反应程度随温度上升而加深。胺类在高温下通过美拉德、曼尼希等反应形成较稳定的吡咯、吡啶等杂环氮。焦炭中残留的含氮物质包括未分解的蛋白质、杂环氮以及季氮和少量腈类;焦油中的含氮物质为胺类氮和杂环氮,无腈类氮出现;水溶液中以有机氮为主,其次有大量NH ;释放的含氮气体主要为HCN。 相似文献
13.
利用电渗透和高级氧化技术,采用自制实验装置对城市污水处理厂的脱水污泥进行了脱水研究,系统研究了过硫酸盐投加量、铁盐与过硫酸盐比例、电压梯度、脱水时间和污泥厚度对污泥脱水的影响。结果表明,电渗透-高级氧化复合技术可以改善污泥的脱水性能,在污泥样品为140 g、过硫酸盐投加量为100(mg·g DS)-1、Fe2+与过硫酸盐比例为1:1、机械压力为17.59 kPa、控制初始电压为11 V·cm-1时,污泥的含水率可以降低至60%以下,与单独使用电渗透技术相比,泥饼具有更好的均匀性,便于后续的运输和安置。 相似文献
14.
针对污泥阴燃处理灰渣开展了关于磷浸出回收性能的实验研究,并与传统焚烧和热解处理工艺所产生的焚烧灰和热解焦的磷浸出回收性能进行了分析对比。结果表明,热产物中磷含量与残碳含量有关,而热处理过程中磷留存率与反应剧烈程度等因素有关。热处理会降低污泥中磷的生物有效性,尤其是焚烧。污泥阴燃灰、焚烧灰和热解焦的磷浸出过程主要受反应物浓度和产物层扩散控制,浸出时间不应超过8 h。通过硫酸浸出污泥热处理产物的方法,单位质量热产物的磷浸出量为25.72~34.42 mg/g,可将原污泥中的磷回收59.30%~84.21%。进一步对浸出工艺进行工况优选,可在保持较高污泥磷回收率的同时大幅降低硫酸单位消耗量。 相似文献
15.
针对污泥阴燃处理灰渣开展了关于磷浸出回收性能的实验研究,并与传统焚烧和热解处理工艺所产生的焚烧灰和热解焦的磷浸出回收性能进行了分析对比。结果表明,热产物中磷含量与残碳含量有关,而热处理过程中磷留存率与反应剧烈程度等因素有关。热处理会降低污泥中磷的生物有效性,尤其是焚烧。污泥阴燃灰、焚烧灰和热解焦的磷浸出过程主要受反应物浓度和产物层扩散控制,浸出时间不应超过8 h。通过硫酸浸出污泥热处理产物的方法,单位质量热产物的磷浸出量为25.72~34.42 mg/g,可将原污泥中的磷回收59.30%~84.21%。进一步对浸出工艺进行工况优选,可在保持较高污泥磷回收率的同时大幅降低硫酸单位消耗量。 相似文献