首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
环氧树脂(EP)高分子复合材料具有较低的热导率,其绝缘器件因散热及耐热性较差长期使用会出现故障和失效等隐患。通过向EP中添加微米氮化硼(BN)来制备具有高耐热性、高热导率的复合绝缘材料,并研究了复合材料的导热性能和耐热性能。结果表明:在六方氮化硼(hBN)质量分数为30wt%时,复合材料的热导率为0.444 W/(m·K),是纯EP的2.3倍。使用KH560改性hBN制备的复合材料,在填料质量分数为30wt%时,复合材料的热导率为0.456 W/(m·K),比未改性略有提高。而对于hBN-cBN/EP热压复合材料,在填料质量分数为30wt%时,其面内热导率为1.32 W/(m·K),远大于法向热导率。通过混掺制备了两种粒径(1、5~10μm)的hBN/EP复合材料,结果表明:填料混掺能明显提高材料的耐热性,通过向hBN/EP复合材料中添加1μm和10μm两种不同粒径的立方氮化硼(cBN)制备复合材料及其热压复合材料,结果表明:加入cBN和热压都能提高复合材料的耐热性能。  相似文献   

2.
采用压力浸渗法制备了石墨/铝复合材料,研究了不同体积分数鳞片石墨对复合材料热学性能和组织的影响。结果表明,加入石墨片明显提高复合材料水平热导率,同时降低复合材料热膨胀系数和密度。当复合材料中石墨体积分数从23.9%增加到73.4%,复合材料水平热导率从234 W/(m·K)提高到402 W/(m·K),同时热膨胀系数降低至5×10-6/K,兼顾高热导率和低热膨胀系数的特点。  相似文献   

3.
双酚A环氧树脂(EP)因其具有优异电绝缘性能而被广泛应用于电子器件中,但EP的热导率较低,通过填充高导热无机填料而构建导热通路是当前提高聚合物复合材料热导率的有效策略。本文综合利用溶液共混与热压工艺制备得到了六方氮化硼(h-BN)-四针状氧化锌晶须(T-ZnOw)/EP复合材料,并对复合材料的微观形貌与物相结构、导热性能及绝缘性能进行了系统表征与分析。结果表明,复合填充h-BN-T-ZnOw/EP复合材料兼具良好的导热性和绝缘性,当h-BN-T-ZnOw的填充含量为30wt%/5wt%时,25℃下热导率为0.55 W/(m·K),相比于纯EP提升了2.9倍,同时复合材料体积电阻率大于1015Ω·m,表现出良好的绝缘性。  相似文献   

4.
氧化锌晶须/环氧树脂导热绝缘复合材料的制备与性能   总被引:4,自引:0,他引:4  
以环氧树脂(E-44)为聚合物基体,四针状氧化锌晶须(ZnOw)为填充材料,制备了氧化锌晶须/环氧树脂导热绝缘复合材料,研究了ZnOw含量对复合材料的导热性能、电性能的影响,并用扫描电子显微镜对断口形貌进行了观察。结果表明,较少量ZnOw的加入(体积分数<10%),复合材料的导热性能得到有效改善,但仍维持了聚合物材料所具有的电绝缘和低介电常数、低介电损耗的特点。其中当ZnOw体积分数为10%时,ZnOw/EP复合材料的热导率达到0.68W/(m·K),相比纯环氧树脂提高了3倍。  相似文献   

5.
研究了石墨粒径及表面镀Si处理对石墨/Al复合材料热物理性能的影响。结果表明:在盐浴过程中石墨表面形成了SiC层,这不仅增强了石墨-Si/Al复合材料的界面结合力,而且抑制了Al4C3相的产生。随着石墨鳞片体积分数从50%增加到70%,复合材料X-Y方向的热导率从492 W/(m·K)增加到654 W/(m·K),而且体积分数为50%的镀Si石墨/Al复合材料抗弯强度达到了81 MPa,相比未镀覆的提高了53%,是理想的定向导热电子封装材料。随着石墨粒径从500μm减小到150μm,石墨-Si/Al复合材料X-Y面方向的热导率由654 W/(m·K)降低到445 W/(m·K),但Z方向的热导率和复合材料抗弯强度变化不明显。  相似文献   

6.
超细氮化硼/环氧树脂复合材料的制备和性能影响   总被引:4,自引:0,他引:4  
将超细高导热的氮化硼(简称BN)与环氧树脂(简称EP)进行复合制备了EP/超细BN复合材料.研究了超细BN的含量对EP/BN复合材料的导热性能及微观结构的影响.结果表明,当BN质量分数为90%时,EP/BN复合材料的热导率达到1.2447W/(m·K),约为纯EP的7倍.  相似文献   

7.
通过溶胶浸渍的方法在碳纤维表面涂覆锂硅溶胶,在高温热处理后,在碳纤维表面形成了二阶和四阶石墨插层化合物。采用涂层处理后碳纤维制备碳纤维增强锂铝硅(Cf/LAS)玻璃陶瓷复合材料。结果表明,碳纤维表面石墨插层化合物的形成,显著提高了Cf/LAS复合材料的热传导能力,提高热压烧结温度有利于热导率的提高。碳纤维表面无涂层处理的Cf/LAS复合材料的热导率在1.1~1.3W/(m·K)之间,碳纤维表面经过涂层处理后,Cf/LAS复合材料的热导率从1.3W/(m·K)提高到2.2W/(m·K),提高了70%。  相似文献   

8.
环氧树脂具有质量较轻、防腐性能和绝缘性能优良等一系列优势,因而被广泛应用于电气装备、高电压绝缘系统和航空航天等诸多领域。但环氧树脂的本征热导率较低,约为0.11~0.19 W/(m·K),如此低的热导率不利于系统及时有效地散热。氮化硼纳米片(BNNS)由于其优良的导热性能和绝缘性能,在高电压绝缘系统中具有广阔的应用前景。然而,BNNS制备流程复杂以及在液体中分散性差是目前限制其广泛应用的主要原因。采用一种简单而有效的蔗糖辅助机械化学剥离(SAMCE)方法来同时实现BNNS的剥离和改性,将蔗糖剥离改性得到的六方氮化硼(h-BN)加入环氧树脂中,添加改性h-BN的质量分数为15%时,复合材料的热导率可以达到0.51 W/(m·K),此时复合材料的热导率是纯环氧树脂材料的3.2倍,导热性能明显提升。为解释改性h-BN提升环氧树脂复合材料导热性能的机理,根据有效介质近似(EMA)理论模型反推计算得到改性前后h-BN/环氧树脂复合材料中填料颗粒与基质之间的界面热阻值,计算得到h-BN/环氧树脂复合材料的界面热阻为2.44×10-6m2·K/W,改性h-...  相似文献   

9.
片层石墨/铝复合材料具有低密度、高热导率的优点,但力学性能较差,目前无法作为一种可商业化应用的电子封装材料。为了改善片层石墨/铝复合材料的热物理性能,采用真空热压法制备了碳化硅颗粒增强石墨/铝复合材料,研究了碳化硅的含量对复合材料热导率、热膨胀系数和抗弯强度的影响。结果表明,经过高频振荡工艺,碳化硅-石墨/铝复合材料中石墨的排列取向良好。添加碳化硅颗粒能明显降低复合材料的热膨胀系数,提高抗弯强度,略微降低热导率。随着碳化硅颗粒体积分数增加,碳化硅-石墨/铝复合材料内部会逐渐出现孔洞缺陷,相对密度下降。当碳化硅和石墨的体积分数分别为15vol%、50vol%时,碳化硅-石墨/铝复合材料具有最优热物理性能,此时x-y方向热导率为536 W/(m·K)、热膨胀系数为6.4×10-6m/K,抗弯强度为102 MPa,是一种十分具有商业前景的电子封装材料。  相似文献   

10.
选择粒径30μm和120μm的氮化硼微球(GBN)作为导热填料,通过超支化环氧树脂(HPEP)与GBN之间的π-π相互作用得到了超支化聚合物修饰的氮化硼微球(HPEP-GBN),通过共混制备了具有不同复配比例的环氧树脂复合材料(HPEP-GBN/EP)。调整小粒径填料的质量分数(Xs)研究了不同氮化硼微球的复配比例对复合材料流变行为和导热性能的影响,进一步分析了填料的形状和超支化聚合物的表面修饰对复合材料性能的影响。结果表明,当Xs=0.4时,HPEP-GBN/EP复合材料的黏度最低,具有比GBN/EP复合材料更优异的加工性能和导热性能。体系的填料质量分数可以达到80%,此时导热系数达到了5.28W/(m·K),是纯环氧树脂的31.06倍。此外,HPEP-GBN/EP复合材料还具有比GBN/EP更优异的力学性能和热稳定性、更低的介电损耗和热膨胀系数。  相似文献   

11.
随着电子技术快速的发展,聚合物材料自身较低的热导率已不能满足现代电子器件的散热需求,因此提高聚合物热导率,实现高效率的传热具有重要意义。利用多巴胺优异的包覆性能实现对氮化硼(BN)粉末和石墨烯微片(GNPs)的表面修饰。然后将功能化的BN和GNPs作为导热填料,制备了系列环氧树脂(EP/BN/mBN/m(BN/GNP))导热绝缘复合材料,研究了填料的种类和含量对复合材料导热性能和电绝缘性能的影响。结果表明,经多巴胺改性后的BN和GNPs能比较均匀分散于环氧树脂体系中;当添加30 wt%的m(BN/GNP)(1∶1)填料时,复合材料的热导率达到0.61 W/(m·K),与纯环氧树脂材料相比提高了238.9%,且该复合材料仍保持优异的绝缘性能。  相似文献   

12.
《功能材料》2021,52(6)
以氧化石墨烯(GO)为载体,醋酸锌为锌源,采用溶胶-凝胶法成功制备了氧化锌@石墨烯(ZnO@rGO)复合填料并利用傅里叶变换红外光谱(FTIR)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)对复合填料的结构及微观形貌进行表征。然后以ZnO@rGO作为导热填料,制备了系列环氧树脂(ZnO@rGO/EP)导热绝缘复合材料,研究了填料含量对复合材料性能的影响。结果表明,复合填料能较均匀地分散于环氧树脂基体中,随填量的增加,ZnO@rGO(O_2)/EP复合材料的热导率不断增加,冲击强度先提高后降低。当添加22.04%(体积分数)的ZnO@rGO(O_2)填料时,复合材料的热导率达到0.58 W/(m·K),与纯环氧树脂材料相比提高了205.3%,而冲击强度由纯环氧树脂的15.9 kJ/m~2提高到25.0 kJ/m~2且该复合材料仍保持良好绝缘性能。  相似文献   

13.
采用热压烧结工艺成功制备了一种新的β-锂霞石增强铜基复合材料.利用扫描电镜和透射电镜对复合材料的微观组织进行了分析,并对不同体积分数复合材料的致密性,热膨胀性能和热传导性能进行了测试.结果表明:β-锂霞石颗粒在铜基体中分布均匀,界面清晰,不发生界面反应;体积分数对复合材料致密性、热膨胀系数和热导率有明显影响,当β-锂霞石颗粒体积分数超过40%时,复合材料的致密性有明显下降,热膨胀系数在(9~15.4)×10-6/K,同时热导率在50~170W/m·K.  相似文献   

14.
以高温盐浴法对天然鳞片石墨粉体(GF)进行表面TiC镀层处理,然后采用真空热压烧结法制备TiCGF/Cu复合材料,研究了粉体表面涂层和GF体积分数对复合材料微观结构、热导率及抗弯强度的影响。系列测试结果表明:随着GF体积分数的降低以及粉体表面TiC镀层的形成,TiC-GF/Cu复合材料平行于GF片层方向的热导率有所降低,抗弯强度有所提升。其中在GF的体积分数占TiC-GF/Cu复合材料70%时,这种变化最为明显,平行于GF片层方向的TiC-GF/Cu复合材料热导率下降幅度最大,从676W/(m·K)下降到526 W/(m·K)。同时,TiC-GF/Cu复合材料的微观结构进一步说明,GF表面的TiC涂层对GF/Cu复合材料的断裂模型起着重要的作用。  相似文献   

15.
采用液相还原法,制备了BN表面沉积纳米Sn粒子(BN-Sn NPs)杂化材料,用于环氧树脂(EP)的导热绝缘填料。BN-Sn NPs表面纳米Sn的粒径和熔点分别为10~30 nm 和166.5~195.3℃。BN表面沉积纳米Sn后,粉体Zeta电位及压片的导热系数增加,EP滴在压片表面的接触角降低。在BN-Sn NPs/EP复合材料固化过程中,BN-Sn NPs表面纳米Sn熔融烧结,有利于填料相互桥联在一起,降低接触热阻,并改善界面性能,从而提高BN-Sn NPs/EP复合材料的导热系数。当填料体积含量为30vol%时,BN-Sn NPs/EP复合材料的导热系数达1.61 W(m·K)?1,比未改性BN/EP复合材料的导热系数(1.08 W(m·K)?1)提高了近50%。Monte Carlo法模拟表明,BN和BN-Sn NPs在EP基体中的接触热阻(Rc)分别为6.1×106 K·W?1和3.7×106 K·W?1。与未改性BN/EP复合材料相比,BN-Sn NPs/EP复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有良好电绝缘性能。   相似文献   

16.
采用真空气压浸渗方法制备Sip/Al复合材料,研究硅颗粒表面炭化和氮化处理对Sip/Al复合材料组织结构和性能的影响。结果表明:炭化和氮化处理可在硅颗粒表面生成炭化硅层和氮化硅层,能有效地阻止高温制备时铝对硅的溶解,提高复合材料的性能。经1300℃炭化处理2h后制得的体积分数为50%的Sip/Al复合材料,其热导率达139.98W·(m·K)-1,相比未作处理的提高约30%;经1200℃氮化处理2h后制得的体积分数为50%的Sip/Al复合材料,其热导率为128.80W·(m·K)-1,相比未作处理的提高约20%。  相似文献   

17.
通过真空热压烧结制备出高石墨含量的鳞片石墨/铜复合材料。研究了高石墨含量对鳞片石墨/铜复合材料微观结构和性能的影响。结果表明,随着石墨体积分数的增加(72. 08 vol.%~93. 34 vol.%),复合材料的密度降低(4. 07~2. 63 g cm~(-3));电导率降低(14. 71%~2. 45%国际退火铜标准);面向热导率先增加后降低,在石墨体积分数为82. 6%时,面向热导率达到最大值为663. 73 W m~(-1)K~(-1);面向热膨胀系数降低(6. 6×10~(-6)~2. 2×10~(-6)K~(-1));抗弯强度降低(42. 48~14. 63 MPa),抗压强度降低(45. 75~20. 46 MPa)。鳞片石墨在复合材料中高度取向排列,分布均匀。并对预测复合材料的热导率模型进行修正,发现测量结果和模型预测结果相吻合。  相似文献   

18.
多层石墨/硅树脂导热复合材料的制备与性能   总被引:2,自引:0,他引:2       下载免费PDF全文
以硅树脂为基体材料,多层石墨为导热填料,采用旋转搅拌球磨法制备了多层石墨/硅树脂导热复合材料,研究了填料对多层石墨/硅树脂复合材料热导率、热膨胀系数(CTE)和热稳定性的影响.结果表明,多层石墨在硅树脂中分散性良好.多层石墨/硅树脂复合材料的热导率随多层石墨填充量的增加而增大,填充质量分数为45%时,热导率达到2.26W· (m· K)-1,超过此值之后热导率开始下降.随着填料的增加,多层石墨/硅树脂复合材料热膨胀系数减小.与纯硅树脂相比,多层石墨/硅树脂复合材料热稳定性高.相同填充量下多层石墨/硅树脂比SiC/硅树脂、AlN/硅树脂的热导率高得多,这说明径厚比大的片状填料更易形成有效接触和导热网链.  相似文献   

19.
为在较低的导热填料含量下提高环氧树脂(EP)的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-EP) (GNP/(PEK-C-EP))复合材料。基于接触角测量计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对GNP/(PEK-C-EP)复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中,形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。当GNP含量为1wt%时,GNP/EP复合材料导热率最高达0.375 W(m·K)?1。当GNP含量为0.5wt%时,GNP/(PEK-C-EP)复合材料导热率最高达0.371 W(m·K)?1,较GNP含量为0.5wt%的GNP/EP复合材料热导率高48%,与GNP含量为1wt%的GNP/EP复合材料的热导率基本相同。表明GNP/(PEK-C-EP)复合材料的填料量减少了50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)复合材料的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。   相似文献   

20.
为了制备出具有优良热物理性能的石墨/铜复合材料,采用流延法将天然鳞片石墨定向排列在铜箔表面,并使用真空热压法制备具有层状结构的高定向石墨/铜复合材料。使用XRD和SEM等表征方法分析样品的微观形貌和成分,结果表明,在高温的作用下,流延所使用的溶剂充分挥发,热压后石墨仍高定向排列在相邻的两层铜箔之间,并相互搭接;部分熔化的铜在压力作用下渗透到石墨层的孔隙处,铜层之间相互贯穿。这种结构使石墨/铜复合材料具有优良的热物理性能。当石墨体积分数为20vol%~70vol%时,石墨/铜复合材料在高导热平面内热导率高达402~743 W/(m·K),抗弯强度达到126~48 MPa。深入讨论了石墨/铜复合材料的热传导机制,并建立了导热预测模型。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号