首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
溶剂萃取法分离铋、锑、锡   总被引:1,自引:1,他引:0  
本文报道了溶剂萃取法从电解锡阳极泥的盐酸浸取液中提取分离Sb~(3+),Bi~(3+),Sn~(4+),Sn~(2+)的情况.考察了溶液中只有单个组分存在时,萃取剂(TBP)的浓度、温度、初始水相盐酸浓度对其萃取分配比的影响,Bi~(3+)的萃取在较高的TBP浓度(50%),较低的盐酸浓度(<1.0mO1/L)下,效果较好;Sb~(3+),Sn~(4+),Sn~(2+)的萃取在中等TBP浓度(25%)及中等盐酸浓度(3~6mol/L)下即可达到较好的效果。实验中探讨了TBP萃取Sb~(3+),Bi~(3+)、Sn~(4+),Sn~(2+)的萃合物的形式及萃取反应热效应,萃取反应均为放热反应,其热效应的数值就绝对值而言,Sb~(3+)相似文献   

2.
采用皂化的P204+磺化煤油体系共萃铬、铁,选择性反萃分离铬、铁工艺,从电镀污泥硫酸浸出液中回收富集铬.考察皂化率、P204浓度、料液初始pH值、萃取时间、温度、相比等因素对于萃取效果的影响,考察反萃剂组成、浓度、相比等因素对反萃效果的影响.结果表明:P204皂化率及浓度是影响铬的萃取率重要因素.在萃取有机相组成为30 %P204+70 %磺化煤油,皂化率为70 %,料液pH=2.42,VO/VA=1/1,萃取温度28 ℃,振荡时间5 min条件下,经6级逆流萃取达到平衡之后,出口水相铬浓度为0.9 mg/L左右,铬萃取率为99.99 %.采用2段反萃工序有效的分离铬铁:采用2 mol/L硫酸反萃,相比VO/VA=5/1,温度32 ℃,振荡时间5 min,经过3级逆流反萃,铬反萃率为97.5 %,铬浓度富集到29.5 g/L,铁浓度为10 mg/L;反萃铬后负载有机相再用氢氧化钠溶液反萃铁.   相似文献   

3.
傅洵  辛惠蓁 《稀有金属》1993,17(3):165-168
研究了 HDEHP 与 PSO 从盐酸介质中对 Mo(Ⅵ)的萃取和协同萃取,报道了萃取平衡表达式,并计算了表观萃取平衡常数。水相介质中 HCl 与 LiCl 总浓度小于4mol/L 时 HDEHP 萃取 Mo(Ⅵ)主要通过 MoO_2~(2+)与 H_2A_2的离子交换进行,MoO_2Cl~+的萃取可以忽略。导出的协萃方程仅适合于从3mol/L HCl 的水相介质中萃取 Mo(Ⅵ),协萃机理随试验条件的变化而变化。  相似文献   

4.
针对氯盐体系铟的萃取进行萃取体系、酸度、萃取剂浓度、相比和时间条件试验,对反萃过程中关键影响因素盐酸浓度进行试验。最佳萃取工艺参数为:有机相30%P204、相比(O/A)=1/3、皂化率60%、初始水相pH=0.5、室温混合5min;铟一级萃取率能够达到97.01%,三级逆流萃取能够稳定达到99.5%。反萃工艺参数为相比10/1、盐酸浓度3mol/L、室温混合5min,一级反萃率75.52%,三级反萃率达到100%。经萃取、洗涤、反萃后,铟回收率达到96.8%。  相似文献   

5.
采用溶剂萃取法从含钒钨酸钠溶液中选择性萃取分离V。考察了萃取体系组成、料液初始pH值、萃取相比、振荡时间、温度等因素对萃取效果的影响,并确定了萃取级数和反萃体系,考察了萃取剂循环使用效果。实验结果表明,采用组成(体积分数)为20%N263+40%仲辛醇+40%磺化煤油的有机相体系,对初始pH值为8.70、WO3浓度为66.21g/L、V2O5浓度为11.46g/L的料液进行萃取分离V,在相比O/A为1/2.5及室温条件下,经过6级逆流萃取,V2O5萃取率达到99.90%以上,WO3的共萃率仅8.00%左右,萃余液中V2O5浓度可降至10 mg/L以下;负载有机相用1.5mol/L NaCl+2mol/L NaOH溶液反萃,在相比O/A为3/1及室温条件下,V2O5单级反萃率可达95.24%,WO3单级反萃率为100%。萃取剂在循环使用过程中对钒钨的萃取效果基本不变。  相似文献   

6.
研究了P204从硫酸体系萃取镓的性能,分别考察了料液酸度、萃取剂浓度、时间、浓度等对镓萃取与反萃的影响并绘制等温线,确定并模拟逆流试验过程。结果表明:料液含0.3g/L Ga^3+,pH=1.2,有机相采用20%P204(体积分数)+磺化煤油,按相比O/A=1∶3,25℃萃取8min,经过3级逆流萃取,镓萃取率可达到99.33%,负载有机相用1.0mol/L H2SO4溶液反萃,按相比O/A=10∶1,反萃温度25℃,反萃时间10min,经过3级逆流反萃,镓反萃率达98.99%,镓浓度富集近30倍。反萃液中的镓经氨水中和沉淀、焙烧后,可得到氧化镓产品。  相似文献   

7.
研究了萃取剂浓度、料液酸度、萃取时间等因素对铟萃取率的影响;反萃液酸度与反萃时间对反萃铟的影响.结果表明,料液酸度为0.8 mol/L、有机相组成为30% P204+70%磺化煤油、油水相比O/A=1:5、混合5 min时,In3+的单级萃取率为96.8%;用4.0 mol/L的HC1反萃10 min,铟的反萃率为94.9%.  相似文献   

8.
研究了一种新型酸性磷类萃取剂NA萃取中重混合稀土的性能,探讨了萃取过程中有机相的皂化度、有机相组成、混合稀土料液中杂质含量、料液初始p H对新型萃取剂萃取饱和容量的影响以及反萃过程中反萃酸度对反萃性能的影响,同时还探讨了新型萃取剂的损耗率。试验结果表明,控制混合稀土料液浓度与铝浓度比≥222,与铁浓度比≥2543、有机相的皂化度0.64~0.68 mol·L~(-1)、有机相中磺化煤油∶新型萃取剂=1∶1(新型萃取剂浓度为1.45 mol·L~(-1))及混合稀土料液初始p H=1.2的工艺条件下,萃取过程分相效果好,新型萃取剂的饱和容量大于0.20 mol·L~(-1),比传统萃取剂P507的最佳萃取饱和容量高15%~20%左右,新型萃取剂的损耗率为0.42%~0.45%;反萃过程,采用盐酸作为反萃剂,只要控制盐酸浓度为3.0 mol·L~(-1)时,负载有机相的单级反萃率即可达到98%以上;研究结果表明,该新型萃取剂,具有萃取饱和容量大、溶解损失少、循环使用性能好、反萃酸度低的特点,可以大大降低槽体有机积存量、稀土积存量和酸耗量,减少投资成本,改善工作环境,具有广泛的应用前景。  相似文献   

9.
研究了以正十六胺为流动载体,煤油为膜溶剂的支撑液膜萃取体系,建立了支撑液膜在线萃取富集-流动注射分光光度法测定水中痕量镉(Ⅱ)的新方法。对支撑液膜萃取富集条件进行了优化,优化的结果为:试样中HCl浓度为0.04 mol/L,反萃液醋酸铵浓度为0.20 mol/L,载体正十六胺浓度为0.02 mol/L,膜孔径为0.2μm,富集时间为20 min。在最优富集和流动注射条件下,方法的检出限为0.05μg/L,线性范围为0.10~40μg/L。对含量为10μg/L的镉(Ⅱ)标准溶液进行了5次平行测定,其相对标准  相似文献   

10.
《湿法冶金》2021,40(1)
研究了用P204从盐酸体系中萃取铝,考察了萃取时间、萃取温度、料液pH、氯化铝质量浓度、相比(V_o/V_a)、P204浓度对萃取的影响。结果表明:在P204浓度1.5 mol/L、料液pH=3.0、Al~(3+)质量浓度低于30 g/L、相比(V_o/V_a)=2/1、常温下萃取5 min条件下,铝的一级萃取率达70%以上;P204对Al~(3+)的最大饱和萃取率为85.92%,反萃取后P204可循环使用。  相似文献   

11.
研究了以N235为载体的支撑液膜体系从钒页岩酸浸液中直接萃取钒时,载体浓度、稀释剂种类、反萃剂种类及浓度、浸出液pH对钒传质过程的影响,以及钒与浸出液中主要杂质离子Fe、P、Al的分离规律。研究表明,当支撑体膜孔径为0.22μm、Na_2CO_3作反萃剂且浓度为0.6mol/L、煤油为稀释剂、萃取剂浓度10%、料液相pH=1.8、萃取时间13h时,钒的萃取率可达87.73%,杂质离子铁、铝、磷相对于钒的分离系数分别为191.8、350.3、163.0,表明支撑液膜技术对分离富集钒有较好的效果。  相似文献   

12.
P204萃取剂对Fe~(3+)选择性高,生成的萃合物稳定,但有机相中的Fe~(3+)难以反萃取。研究了采用配合还原反萃取法从P204有机相中反萃取Fe~(3+),考察了几种配合离子及还原剂对Fe~(3+)反萃取的影响。强酸性条件下,Cl-易与Fe~(3+)配位形成FeCl_4~-,硫代硫酸钠对Fe~(3+)的反萃取有明显促进作用,因此,探索了以盐酸为配合剂,硫代硫酸钠为还原剂,通过还原反萃取从P204有机相中去除Fe~(3+)。试验结果表明:在常温、相比Vo/Va=3/1、盐酸浓度5 mol/L、一次振荡时间4 min、硫代硫酸钠加入量为理论量的4倍、二次间歇振荡12min条件下,Fe~(3+)反萃取率达88.6%。该方法可有效去除P204有机相中的Fe~(3+),使有机相得到净化。  相似文献   

13.
本文采用溶剂萃取法,用有机次磷酸萃取剂从富含稀土元素镧(La)、钕(Nd)、钇(Y)、铈(Ce)的硝酸溶液中提取稀土。选择盐酸为反萃剂。考察了酸度、萃取剂浓度、相比和萃取时间对萃取率和反萃率的影响,结果表明,二异丁基膦酸萃取稀土的最佳条件为:室温,酸度0.2mol/l,萃取剂浓度40%,A/O比1:5,萃取时间15min,镧(La)、钕(Nd),铈(Ce)和钇(Y)分别为41.68%、81.30%、81.29%和100%。当利用盐酸作为反萃实验的反萃剂时其最佳条件为:室温,初始水相稀土溶液为0.3 mol/L,反萃剂盐酸为6 mol/L,负载有机相与反萃剂盐酸溶液的体积比为1:6,将反萃的震荡时间改变为5min,应用上述条件的镧(La)、钕(Nd)、铈(Ce)、钇(Y)的反萃率分别为92.45%、94.88%、95.76%、93.34%。有机次膦酸对稀土元素(La)、钕(Nd)、铈(Ce)和钇(Y)的萃取效率不同。钇的提取率高于镧、钕和铈。它是一种有机次膦酸,对轻稀土元素亲和力低,对重稀土元素亲和力强。  相似文献   

14.
《湿法冶金》2021,40(1)
研究了用皂化P507从废催化剂浸出液中萃取铝,再经硫酸反萃取、蒸发结晶制备水合硫酸铝,考察了萃取、反萃取过程中几种主要因素对Al~(3+)回收的影响。结果表明:以皂化率45%的25%P507+10%正戊醇+65%260~#溶剂油为萃取剂,在料液中Al~(3+)、Mg~(2+)、Ni~(2+)质量浓度分别为2 g/L、50 mg/L和10 mg/L,料液pH=1.5,萃取相比(V_o/V_a)=1/1,萃取时间3 min条件下,Al~(3+)、Mg~(2+)、Ni~(2+)萃取率分别为99.35%、2.83%、0.56%;负载铝的有机相用硫酸反萃取,在硫酸溶液浓度3 mol/L、反萃取相比(V_a/V_o)=1/1条件下,Al~(3+)反萃取率为95.13%;该反萃取液以蒸发结晶法制备水合硫酸铝,其质量符合HG/T 2225—2010标准Ⅰ类产品要求。  相似文献   

15.
《稀土》2017,(1)
采用1.5 mol/L P507-煤油为有机相,以SmCl_3和ZnCl_2的混合溶液作为料液,改变料液中添加NH4Cl浓度、料液酸度、Zn~(2+)浓度、有机皂化度、相比、混合时间,进行了Sm~(3+)和Zn~(2+)的萃取分离研究。结果表明,萃取分离Sm~(3+)和Zn~(2+)最佳的工艺参数为,有机皂化度为0.54 mol/L、料液中添加3 mol/L的NH_4Cl、料液酸度为0.15 mol/L、萃取相比O/A为2.5∶1以上,混合时间为4 min,Sm~(3+)和Zn~(2+)的最大分离因素βSm/Zn达到39.31。  相似文献   

16.
以N902为萃取剂,从废弃印刷线路板氨性浸出液中萃取回收铜,研究萃取剂浓度、相比(O/A)、萃原液初始pH和时间对铜萃取率的影响。结果表明,室温下N902萃取铜最优条件为:萃取剂浓度15%、O/A=1∶2、料液初始pH=10、萃取时间2.5min。在此条件下Cu2+萃取率98.62%,用2mol/L硫酸溶液对负载有机相进行一级反萃4min,Cu2+反萃率达89.91%,其溶液可满足电积提铜的要求。  相似文献   

17.
对高铁闪锌矿湿法炼锌过程中产出的含铟硫酸钙渣开展了一段酸浸—浸出液铁粉还原—还原液净化预处理—萃取—反萃试验研究,实现了铟与其他杂质元素的分离与高效回收。含铟硫酸钙渣在终酸70g/L、温度80℃、液固比4∶1、时间2h的条件下进行一段酸浸,铟浸出率98%以上;用铁粉将浸出液中的Fe~(3+)还原为Fe~(2+),铁粉过量系数1.5,Fe~(3+)还原率在98%以上;添加8g/L的活性炭对还原液进行净化预处理;用30%的P204在酸度70g/L、相比A/O=4∶1、混合时间3min、温度45℃的条件下对净化液进行四级逆流萃取,铟萃取率达到97.5%以上,萃余液含铟小于4mg/L;负载有机相用6mol/L的盐酸,相比A/O=1∶12,经过四级连续反萃,反萃液铟浓度可富集至70g/L以上。  相似文献   

18.
采用"硫酸沉铅—中和—P204萃取提锌—硫酸反萃"工艺净化处理铅电解废液,重点考察P204煤油体系萃取提锌、硫酸反萃及萃取反萃循环过程。结果表明,按照相比1∶1.5单级萃取的萃取率可达99%左右,3mol/L硫酸单级反萃锌反萃率基本可达100%。9次萃取反萃循环试验后,锌富集浓度可达33g/L,负载有机相锌反萃率达到99.49%,锌直收率可达88.24%。  相似文献   

19.
从赤泥盐酸浸出液中提取钪的工艺研究   总被引:2,自引:0,他引:2  
本文主要是对含钪298.8 mg/L赤泥盐酸浸出液进行提钪技术的研究,本工艺用3%P204+5%环烷酸+煤油作萃取体系,从盐酸浸出液中萃取钪,用6 mol/L的HCl和蒸馏水进行洗涤,再以2 mol/L的NaOH溶液反萃,最终得到的钪富集物中Sc2O3的纯度为50.9%。  相似文献   

20.
采用P204作为萃取剂富集分离石煤酸浸液中的钒和钼,考察了溶液pH值、反萃剂种类、反萃剂浓度、反萃相比对钒钼富集分离的影响.研究结果表明:经过Na2S2O3还原后的溶液,钒的萃取率可以达到84.1%,钼的萃取率可以达到81.1%;采用1.5 mol/L的硫酸溶液反萃负载钒和钼的有机相,钒的反萃率可以达到99%以上,钼不能被反萃;在O/A为(体积比)3∶1的条件下采用60 g/L的碳酸氢铵溶液可以将钼反萃,其反萃率为76.4%.采用不同的反萃剂,可以实现钒和钼的分离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号