首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以草酸为沉淀剂制备了一种绣球状CuO-CeO2(简称CuCe)催化剂,考察了其用于富氢条件下CO选择性氧化时工艺条件、活性组分的负载量等对催化性能的影响。结果表明,600℃的焙烧温度有利于催化剂的催化活性;且5%CuCe催化剂具有最佳的催化活性和稳定性。CO完全转化温度区间为105~150℃,且在105℃时O2对CO的选择性高达95%;同时,在110 h内CO转化率基本保持在100%。XRD与Raman表征结果表明,活性组分CuO被高度分散于载体CeO2表面,且部分Cu物质与CeO2晶格形成了Cu-Ce固溶体,从而产生了更多的氧空位和Ce3+。XPS测试结果表明,5%CuCe催化剂具有更高的氧空位浓度与Cu+的相对质量分数,导致其具有最佳的催化性能。  相似文献   

2.
采用浸渍法制备了Al2O3、SiO2、Y2O3及活性炭负载的0.2%(质量分数,下同)Pt催化剂。氮气吸附脱附、H2-TPR、CO脉冲吸附对催化剂表征的结果表明,活性炭载体上活性组分的分散度最高,催化甲基环己烷(MCH)脱氢反应的结果表明,活性炭负载的Pt催化剂具有最高的催化活性。  相似文献   

3.
通过浸渍与化学还原相结合的方法制备了活性三氧化二铝负载CoB非晶态合金的负载型催化剂,并把该催化剂应用于硼氢化钠水解制氢反应。用SEM、XRD及BET等对三氧化二铝负载CoB非晶态合金催化剂的微观结构进行了系统表征,结果表明,非晶态合金CoB纳米颗粒能够均匀地分布于三氧化二铝表面,抑制了磁性纳米粒子CoB的团聚现象,显著提高活性组分CoB的分散度。产氢实验表明,具有高比表面积的负载型催化剂显著提高了硼氢化钠水解产氢速率, 经计算硼氢化钠催化水解反应活化能约为55.21 kJ/mol,明显低于基于非负载型CoB催化剂硼氢化钠催化水解反应的活化能(73.37 kJ/mol)。同时随着温度、负载量及催化剂用量的增加,产氢速率也随之增加,25 ℃时水解反应的产氢速率约为1.03 mL/(min·mol)。  相似文献   

4.
采用等体积浸渍的方法制备V2O5-CeO2/TiO2催化剂,考查了V2O5/CeO2比、负载顺序、焙烧温度、反应空速对催化剂协同脱硝脱二噁英性能的影响。结果表明,所制备的催化剂活性组分在载体表面分散均匀。采用共同浸渍法制备,V2O5/CeO2质量比为1∶3,焙烧温度为550℃的催化剂协同脱硝脱二氯苯性能最佳,在200℃反应温度下脱硝率为93%,二氯苯的脱除率达到90%。  相似文献   

5.
田甜  张尚文  熊奎  吴浩民  李亚琼  张傲然  王磊 《广州化工》2022,(21):105-106+118
本文采用溶胶凝胶法和沉积沉淀法,通过改变制备过程中CeO2的相对含量、金陈化时长、焙烧中间载体的温度等自变量的方式制备Au-TiO2-CeO2催化剂。采用SEM和CO气体检测管对催化剂进行比表面积、金附着量及附着均匀程度和氧化结果等信息的分析。结果显示,催化剂的催化活性在CeO2相对含量为15%,陈化1 h, 200℃载体焙烧后的催化效果最好。当自变量的值在最优量两侧时,催化剂的催化活性均大致呈现为下降趋势。  相似文献   

6.
为了获得高水热稳定的负载Ni催化剂,延长催化剂在含水液相体系中的使用寿命,以不同温度焙烧的SiO2-Al2O3为载体,采用浸渍法制备Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅立叶变换红外光谱、X射线衍射、NH3-程序升温脱附和H2-程序升温还原等方法进行表征,以水相1,4-丁炔二醇加氢为探针反应,研究载体焙烧温度对Ni/SiO2-Al2O3催化剂催化加氢性能及含水体系中稳定性的影响。结果表明,在(400~800) ℃,随着载体焙烧温度升高,活性组分Ni存在状态及催化剂加氢活性变化较小,但催化剂的水热稳定性下降,造成这一现象的原因是随着载体焙烧温度升高,载体表面SiO2聚集,暴露的Al3+增加,载体水合程度增大。载体焙烧温度400 ℃时,Ni/SiO2-Al2O3催化剂表现出最佳的水热稳定性。  相似文献   

7.
采用化学还原法制备了三元非晶态Co-Cr-B纳米催化剂。采用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)等测试方法对催化剂的形貌、结构、成分做了表征。通过排水法进行NaBH4溶液水解产氢反应,测量了催化剂的催化性能。结果表明,当掺杂少量的Cr时,催化剂的粒径明显减小,比表面积明显增大,催化剂的性能提高。过量的Cr会导致出现过多的氧化物和Cr 3+,覆盖了催化剂表面活性位点,降低催化剂的性能。当Cr与Co物质的量比为0.005时,催化剂性能最佳。与纯Co-B相比,其对硼氢化钠水解产氢速率提高了2倍。此外,研究了催化剂用量、NaBH4浓度、反应温度、NaOH浓度等因素对NaBH4溶液水解产氢反应的影响。  相似文献   

8.
先后采用化学浸渍和还原的方法制备了不同比例的沸石咪唑酯骨架材料ZIF-7负载CoB的催化剂,对其结构进行了表征,并系统探究了该催化剂在催化硼氢化钠水解制氢中的催化活性。结果表明,相比于纳米CoB粉末催化剂,负载型CoB/ZIF-7催化剂在硼氢化钠水解制氢中具有更高的催化活性,25℃时NaBH_4水解产氢速率大约为252.19 m L/(min·g)。化学反应动力学表明:负载型CoB/ZIF-7催化剂催化NaBH_4水解制氢反应属于一级反应,其表观活化能约为51.48 k J/mol,远远低于纳米CoB粉末催化剂的活化能72.01 k J/mol。  相似文献   

9.
先后采用化学浸渍和还原的方法制备了不同比例的沸石咪唑酯骨架材料ZIF-7负载CoB的催化剂,对其结构进行了表征,并系统探究了该催化剂在催化硼氢化钠水解制氢中的催化活性。结果表明,相比于纳米CoB粉末催化剂,负载型CoB/ZIF-7催化剂在硼氢化钠水解制氢中具有更高的催化活性,25℃时NaBH_4水解产氢速率大约为252.19 m L/(min·g)。化学反应动力学表明:负载型CoB/ZIF-7催化剂催化NaBH_4水解制氢反应属于一级反应,其表观活化能约为51.48 k J/mol,远远低于纳米CoB粉末催化剂的活化能72.01 k J/mol。  相似文献   

10.
采用水热法合成纳米尺寸的CuO,然后采用微乳液法或浸渍法将CeO2负载在CuO上制备逆负载的CeO2/CuO催化剂。通过X射线衍射(XRD)、程序升温还原(TPR)、比表面分析(BET)和富氢气中CO优先氧化活性测试等研究手段对催化剂进行了表征。研究发现,CeO2/CuO催化剂的活性和选择性与CeO2和CuO颗粒的尺寸密切相关,大颗粒的CuO载体有利于提高催化剂的选择性;小颗粒的氧化铈负载在大颗粒的氧化铜上,可以产生更多两相接触界面,有助于提高催化剂的活性。  相似文献   

11.
Keun Woo Cho  Hyuk Sang Kwon   《Catalysis Today》2007,120(3-4):298-304
Co and Co–P catalysts electroplated on Cu in sulfate based solution without or with an addition of H2PO2 ions were developed for hydrogen generation from alkaline NaBH4 solution. The microstructures of the Co and Co–P catalysts and their hydrogen generation properties were analyzed as a function of cathodic current density and plating time during the electrodeposition. An amorphous Co–P electrodeposit with micro-cracks was formed by electroplating in the sulfate based solution containing H2PO2 ions. It was found that the amorphous Co–P catalyst formed at 0.01 A/cm2 exhibited 18 times higher catalytic activity for hydrolysis of NaBH4 than did the polycrystalline Co catalyst. The catalytic activity of the electrodeposited Co–P catalyst for hydrolysis of NaBH4 was found to be a function of both cathodic current density and plating time, that is, parameters determining the concentration of P in the Co–P catalyst. Especially, Co–13 at.% P catalyst electroplated on Cu in the Co–P bath at a cathodic current density of 0.01 A/cm2 for 1080 s showed the best hydrogen generation rate of 954 ml/min g-catalyst in 1 wt.% NaOH + 10 wt.% NaBH4 solution at 30 °C.  相似文献   

12.
采用浸渍-化学还原法制备了硼化钴/二氧化硅(CoB/SiO2)催化剂,并考察了其催化硼氢化钠水解制氢的性能。研究了二氧化硅粒径、硝酸钴与二氧化硅物质的量比、硝酸钴与硼氢化钠物质的量比等条件对催化剂性能的影响,进而考察了催化剂用量、搅拌转速、反应温度等条件对硼氢化钠水解制氢性能的影响。结果表明,在二氧化硅粒径为15 nm、硝酸钴与二氧化硅物质的量比为0.08∶1、硝酸钴与硼氢化钠物质的量比为1∶5条件下,制备的催化剂催化硼氢化钠水解产氢的速率为45.6 mL/(min·g);因为催化剂粒径很小,伴随硼氢化钠水解产氢产生的动量可以完全消除外扩散速率的影响,搅拌转速对硼氢化钠水解速率的影响很小,硼氢化钠的水解速率随着催化剂用量的增加而增大;随着温度的升高,硼氢化钠的水解速率增大,硼氢化钠水解反应的表观活化能为48.54 kJ/mol,硼氢化钠反应级数为零;催化剂具有良好的重复使用性能和稳定性。  相似文献   

13.
采用浸渍-还原法制备了Ru/SiO2催化剂,并考察了钌负载量、还原剂硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/SiO2催化BH3NH3水解产氢的影响。结果表明,在钌的负载量为0.1%(质量分数)、还原剂硼氢化钠与钌的物质的量比为2.2∶1、还原温度为303 K时制备的催化剂,催化BH3NH3水解产氢速率最快[转化频率TOF为140.8 L H2/(mol Ru·min)]。搅拌转速为450 r/min时,氨硼烷向催化剂表面传质最快,产氢速率最大。氨硼烷水解反应由催化剂界面反应控制,产氢速率与催化剂用量成正比。随着反应温度的升高,Ru活化的氨硼烷分子能量增加,反应速率逐渐增加。反应动力学计算表明Ru/SiO2催化剂催化BH3NH3水解产氢反应对氨硼烷浓度为零级反应,活化能为45 kJ/mol。  相似文献   

14.
采用浸渍-还原法制备了铁、钴、镍、铜和锌催化剂,考察了其催化氨硼烷水解产氢性能,并优化了钴催化剂的制备条件和反应条件。结果发现,铁催化剂中铁以Fe2B合金相存在,钴催化剂中钴以金属钴存在,镍催化剂中镍以金属镍和Ni(OH)2·2H2O存在,铜催化剂中铜以金属铜和氧化亚铜存在,锌催化剂中锌以Zn4SO4(OH)6·4H2O存在。铁、钴、镍、铜和锌催化剂催化氨硼烷水解产氢活性由大到小顺序为钴催化剂、镍催化剂、铜催化剂、铁催化剂、锌催化剂。显然,具有金属钴相的钴催化剂、金属镍相的镍催化剂和金属铜相的铜催化剂催化氨硼烷产氢活性高于具有Fe2B合金相的铁催化剂。锌催化剂在制备条件下不能被还原为金属相,它几乎没有催化氨硼烷产氢活性。氯化钴与还原剂硼氢化钠的物质的量比为1∶1.3、还原温度为303 K时制备的钴催化剂催化BH3NH3水解产氢性能最佳。反应动力学计算表明钴催化剂催化BH3NH3水解产氢反应对氨硼烷浓度的反应级数为零级,对钴催化剂浓度的反应级数为一级,活化能为58 kJ/mol。  相似文献   

15.
The direct decomposition of nitric oxide (NO) over barium catalysts supported on various metal oxides was examined in the absence and presence of O2. Among the Ba catalysts supported on single-component metal oxides, Ba/Co3O4 and Ba/CeO2 showed high NO decomposition activities, while Ba/Al2O3, Ba/SiO2, and Ba/TiO2 exhibited quite low activities. The effect of an addition of second components to Co and Ce oxides was further examined, and it was found that the activities were significantly enhanced using Ce–Mn mixed oxides as support materials. XRD results indicated the formation of CeO2–MnOx solid solutions with the cubic fluorite structure. O2-TPD of the CeO2–MnOx solid solutions showed a large desorption peak in a range of relatively low temperature. The BET surface areas of the CeO2–MnOx solid solutions were larger than those of pure CeO2 and Mn2O3. These effects caused by the addition of Mn are responsible for the enhanced activities of the Ba catalysts supported on Ce–Mn mixed oxides.  相似文献   

16.
The present work focuses on the development of novel Cu-Pd bimetallic catalysts supported on nano-sized high-surface-area CeO2 for the oxygen-assisted water–gas-shift (OWGS) reaction. High-surface-area CeO2 was synthesized by urea gelation (UG) and template-assisted (TA) methods. The UG method offered CeO2 with a BET surface area of about 215 m2/g, significantly higher than that of commercially available CeO2. Cu and Pd were supported on CeO2 synthesized by the UG and TA methods and their catalytic performance in the OWGS reaction was investigated systematically. Catalysts with about 30 wt% Cu and 1 wt% Pd were found to exhibit a maximum CO conversion close to 100%. The effect of metal loading method and the influence of CeO2 support on the catalytic performance were also investigated. The results indicated that Cu and Pd loaded by incipient wetness impregnation (IWI) exhibited better performance than that prepared by deposition–precipitation (DP) method. The difference in the catalytic activity was related to the lower Cu surface concentration, better Cu–Ce and Pd–Ce interactions and improved reducibility of Cu and Pd in the IWI catalyst as determined by the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) studies. A direct relation between BET surface area of the CeO2 support and CO conversion was also observed. The Cu-Pd bimetallic catalysts supported on high-surface-area CeO2 synthesized by UG method exhibited at least two-fold higher CO conversion than the commercial CeO2 or that obtained by TA method. The catalyst retains about 100% CO conversion even under extremely high H2 concentration.  相似文献   

17.
Ni catalysts supported on γ-Al2O3, CeO2 and CeO2–Al2O3 systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2–Al2O3 catalysts showed much better catalytic performance than either CeO2- or γ-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal–support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/γ-Al2O3 catalysts for this reaction. A weight loading of 1–5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2.  相似文献   

18.
Low temperature CO oxidation was carried out over CeO2-TiO2 composite oxide and thereon supported Pd catalysts. The effects of Ce/Ti ratio and pre-treatments of calcination and reduction on the catalytic behaviour were investigated. The CO oxidation starts at about 220 °C over CeO2-TiO2 and the pre-reduction treatment has little influence on the catalytic activity. Pd supported on CeO2-TiO2 (Pd/CeO2-TiO2) exhibits high activity for CO oxidation and a complete conversion of CO to CO2 can be achieved even at ambient temperature, which suggests a synergistic effect between Pd and CeO2-TiO2. The activity and stability of Pd/CeO2-TiO2 can be further improved by the pre-reduction treatment. Ce/Ti ratio influences the catalytic behaviour significantly; the catalyst Pd/CeO2-TiO2 with a Ce/Ti mole ratio of 0.20 (Pd/Ce20Ti) owns the highest activity and stability, which suggests an optimization of the Pd-Ce-Ti interaction in Pd/Ce20Ti. The calcined Pd/CeO2-TiO2 with a Ce/Ti mole ratio higher than 0.10 shows a distorted light-off profile with the temperature, which implies an alternation of the reaction mechanism with increasing temperature.  相似文献   

19.
采用浸渍负载-还原法制备了钴-硼/二氧化锆催化剂,研究了催化剂在催化硼氢化钠水解制氢中的性能。研究了催化剂的制备条件(钴与二氧化锆物质的量比、钴与硼氢化钠物质的量比)对其催化性能的影响,并考察了催化剂用量、反应温度、搅拌转速对硼氢化钠水解制氢的影响。结果表明,在钴与二氧化锆物质的量比为0.16:1、钴与硼氢化钠物质的量比为1:5条件下制备的钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢的速率最快。硼氢化钠水解制氢速率随催化剂用量的增加和反应温度的升高而增大,随搅拌转速的增加呈现先增大后减小的趋势。反应动力学计算出钴-硼/二氧化锆催化剂催化硼氢化钠水解对硼氢化钠的浓度属于零级反应。钴-硼/二氧化锆催化剂的硼氢化钠水解反应活化能为43.97 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号