首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大型稀土熔盐电解槽目前国内外采用熔盐电解法生产混合和单一稀土金属。可分为两种电解质体系,一是稀土氯化物电解质(即RECl-KCl),二是稀土氧化物电解质(即REO-REF3)。前者为二元电解质,后者为三元电解质(增加BaF2或LiF)。这些电解质体系...  相似文献   

2.
国内外混合稀土金属及单一稀土常采用熔盐电解法进行生产。本文总结和回顾了熔盐电解制备稀土金属及合金的发展概况,指出稀土熔盐电解未来的发展趋势是:使用节能型电解槽,清洁生产,电解设备大型化和电解过程自动化。  相似文献   

3.
稀土电解槽内电解质导热系数的计算   总被引:2,自引:1,他引:1  
根据混合熔盐导热系数计算原则,通过计算稀土电解槽内电解质单组分熔盐导热系数,从而预测稀土电解槽内三元系电解质熔盐导热系数,为稀土电解槽内温度场的研究提供了一个重要物性参数。  相似文献   

4.
熔盐电解稀土氧化物制取稀土金属   总被引:3,自引:0,他引:3  
《稀土》1980,(2)
序言六十年代以来,国外对熔盐电解稀土氧化物制取稀土金属的研究较多,並取得了很大进展。据报导:美国稀土公司七三年已完成了中间工厂试验,并开始迠造年产25万磅混合稀土金属的2万安培工业电解槽;日本三德金属公司自七○年以来,由国外进口的粗氯化稀土受到限制,而改为从美国大量进口氟碳铈精矿(品位60~70%R_2O_3),把稀土氯化物电解改为稀土氧化物电解,同时造造了几个2万安培的工业电解槽进行生产。  相似文献   

5.
借助已有的稀土电解槽温度场理论研究成果,以6kA稀土镨钕电解槽为研究对象,根据实测电解生产数据与稀土金属产品的化学检测结果对电解温度与稀土熔盐电解技术指标之间的关系进行了分析。结果表明,温度对电解过程的正常进行起着重要作用;能使本稀土镨钕电解槽实现高效、稳定生产的最佳电解温度为1 090℃。  相似文献   

6.
稀土氯化物熔盐电解制取电池级混合稀土金属及其装置一种稀土氯化物熔盐电解制取电池级混合稀土金属及其装置,其特点是电解温度由850-890℃提高到940-980℃,电解时间每炉由2小时缩短为1.5小时;圆形石墨坩埚电解槽的内径与槽深之比小于0.8,配  相似文献   

7.
本文讨论的是电解法生产稀土金属的基本研究工作。以氟化物熔盐和稀土氧化物为原料,根据电化学反应类型。临界电流密度及熔盐熔点设计电解槽。我们测定了极化曲线和电解质熔点,并讨论了稀土氧化物和氟化物熔盐的电化学反应,确定了过程中的析氧,析氟反应,稀土金属及合金的电溶积。金属铈在890℃熔盐中阳极临界电流密度9A/cm^2。钕在920℃阳极临界电流密度为1.6A/cm^2。  相似文献   

8.
以6 kA稀土电解槽为研究对象,采用氟盐体系电解制备稀土金属,同时结合现场生产工况和辉光放电质谱仪(GDMS)检测结果,研究了电解温度、氧化物添加速率及金属出炉方式对稀土金属中氧、钛含量的影响.结果表明:采用虹吸稀土金属出炉方式,控制电解温度为1 040~1 060℃,氧化物添加速率为7~8 kg/h,可稳定地控制稀土...  相似文献   

9.
正在内蒙古包头瑞鑫稀土金属材料股份有限公司(以下简称"包头瑞鑫")生产车间内,有一个长2. 2m、宽1. 8 m,高1 m的电解槽,这就是万安电解槽,也是世界最大的镨钕生产基地里的大杀器。将电解槽中放入氟盐溶液,通入1. 5万A的直流电,炉温保持在1 000℃左右,将稀土镨钕氧化物倒入电解槽中,氧离子到阳极氧化为二氧化碳排出,稀土离子  相似文献   

10.
混合稀土氧化物在冰晶石—氟化铝—氧化铝系熔体中的溶解度数据,对于当前在铝电解槽上加入混合稀土氧化物直接生产含混合稀土的铝合金(成品合金与中间合金)更有现实的意义。显然,不了解溶解度的数值,就无法控制它的加入量,而为了生产稀土含量不同的铝合金,需要控制电解质中的Al_2O_3/REO之比。了解在一定条件下(一定的温度、氧化铝浓度与分子比等)电解质  相似文献   

11.
前言Introduction40多年来,我国用熔盐电解法生产稀土金属(包括混合及单一稀土金属)所用的电解原料有两种。一是处理稀土精矿并除去钐铕钆后的混合稀土溶液(含La、Ce、Pr和Nd),再经减压浓缩,冷却,结晶和破碎所得的固体氯化稀土,专供给1000A电解槽,其含REO≥45%,H2O30%;二是将上述结晶块破碎后放入脱水炉内进行干燥除水得脱水料,专供给10000A电解槽,其含REO59%,结晶水≤5%,水不溶物≤5%。电解槽进行电解作业。这两种原料的生产过程均为间歇式作业,劳动强度大;产品质量不甚好,易于吸水(尤其是后者),电解加料时易引起爆溅,电效率也不高。…  相似文献   

12.
目前国内外一般用熔盐电解法生产混合稀土金属产品。该生产方法可分为两种电解质体系:(1)RECl_3—KCl电解质体系;(2)RE_2O_3—REF_3—LiF电解质体系。这两种电解质体系在国内外混合稀土金属工业化生产中均有应用,且生产规模很大。我国是用RECl_3—KCl电解质体系生产混合稀土金属,而美国法国和德国与我国相同;日本和前苏联  相似文献   

13.
本文论述了混合稀土氧化物坩埚的制备及其在稀土氧化物熔盐电解中作为金属接收器的使用效果。讨论了此材料在熔融稀土金属和熔融氟化物电解质中的化学稳定性、热稳定性以及绝缘性。  相似文献   

14.
我国熔盐电解法制备稀土金属及其合金工艺技术进展   总被引:8,自引:1,他引:7  
介绍了我国熔盐电解法制备稀土金属及其合金工艺技术的发展历程、现状与发展趋势.经过近60年的发展,氟化物体系氧化物电解工艺已经成为当今生产稀土金属及其合金的最重要的和最主要的生产工艺,我国已经基本形成了完整的、具有完全知识产权的熔盐电解工业技术体系和创新体系;分析总结了当前稀土熔盐电解工艺技术的特点及存在的问题,指出造成目前稀土电解高能耗、高排放的最根本的原因是电解槽型即平行上插阴阳极结构决定的,提出开发节能、环保、大型、高效的稀土电解新技术及设备是稀土电解发展的方向;认为液态下阴极电解制备稀土金属及合金新技术由于阴阳极距可减小至6~7cm,阴、阳极电流密度较小,电解槽压可降低至5~6V,可降低能耗、减少含氟气体排放,具有突出的节能减排潜力,是下一代工业化生产稀土金属及合金的新型电解槽,也是今后稀土电解新技术研究领域的重点发展方向;此外,熔盐电解法制备重稀土中间合金由于具备突出的节能减排效果和成本优势,也是当前的重要开发领域.  相似文献   

15.
新型高镧混合稀土添加剂的开发与应用   总被引:6,自引:1,他引:5  
林勤  宋波  张梅  高平祥  王跃华  唐天喜 《稀土》2001,22(4):50-52
开发生产了高镧混合稀土金属丝和棒,能满足作为炼钢稀土添加剂的要求.该新型稀土添加剂有很强的净化钢液作用,对提高耐热钢的抗高温氧化性和热塑性比富铈混合稀土金属有更加显著的效果.  相似文献   

16.
采用Si3N4结合SiC板作为3kA液态下阴极稀土金属电解槽的侧壁材料,进行了实际电解工艺试验,考察了Si3N4结合SiC材料在稀土熔盐电解槽上的使用效果,研究表明,Si3N4结合SiC材料在稀土熔盐中腐蚀较严重,尤其是靠近电解槽阴极位置,由于弥散在电解质中的金属雾和阳极产生的气体加剧了Si3N4结合SiC材料受腐蚀破坏;板材由于受热不均产生了开裂现象,且开裂位置会加剧材料的腐蚀破坏,进一步的分析表明,Si3N4结合SiC材料在稀土熔盐中主要受腐蚀的是含Si3N4的结合相。  相似文献   

17.
以氟化物体系制取混合稀土金属时,金属的组成与电解质的组成有关,确定合适的电解质组成,控制适当的电解温度,可以生产组成稳定、碳含量低的混合稀土金属,产品可作为生产Ni/NH电池的原料。  相似文献   

18.
以钛、铌管等为材质,制得相应规格的虹吸管,采用升降平台设计和虹吸管冷端加装辅助加热装置,通过对3kA和10kA氟化体系稀土电解槽虹吸出炉的试验研究,着重探讨了金属材质种类、吸出高度与压力、吸出管水平长度与形状等对稀土金属虹吸出炉的影响.结果表明,钛质虹吸管材料具有较好的性能价格比,虹吸管顶部的最佳长度为25cm~30cm,最优的管形为直线小圆角形状;金属液实际吸出高度为理论值的0.80~0.83倍.该技术不仅实现了稀土金属电解作业的连续化、机械化,而且大幅减轻出炉劳动强度、提高产品质量,已实际应用于10kA级以上大型稀土电解槽的生产.  相似文献   

19.
通过研究物料添加过程对稀土金属电解槽炉温和电解电流的相互影响,建立稀土熔盐电解加料工艺制度,开发了基于液压升降装置、螺旋给料装置和伺服移动装置的稀土金属高温电解的粉末给料机.并对给料控制方式进行了研究,采用S7-200 PLC控制系统和伺服控制系统,研制了可灵活调节参数的加料自动控制系统.通过稀土金属粉末给料机及控制系统的开发,实现稀土金属电解物料的自动加料,替代人工加料,提高加料的均匀性和精确性,改善工人操作环境,降低人工劳动强度,提高稀土金属产品质量和生产效率,降低生产成本.   相似文献   

20.
当前世界上生产稀土金属或合金的设备是以手工操作为主的3000 A电解槽,因此,在进行稀土金属出炉、更换阳极、定期清炉、拆炉等生产操作过程中,有很多含铁物相杂质很容易累积于稀土熔盐中,废稀土熔盐的产生难以避免.文中通过工艺矿物学分析,明确了稀土熔盐电解渣中含铁物相的种类和嵌布特征,并考察了磁选对杂质铁相的脱除效果,由结果可知,稀土熔盐电解渣颗粒粒度取58~75μm,磁选强度取0.668 T,磁选后强磁性铁矿物基本上进入磁选精矿中,而稀土相则留在了磁选尾矿中,分离效果良好,稀土相得到进一步富集,这有利于后续稀土的提取和回收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号