首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several non-rigid structure from motion methods have been proposed so far in order to recover both the motion and the non-rigid structure of an object. However, these monocular algorithms fail to give reliable 3D shape estimates when the overall rigid motion of the sequence is small. Aiming to overcome this limitation, in this paper we propose a novel approach for the 3D Euclidean reconstruction of deformable objects observed by an uncalibrated stereo rig. Using a stereo setup drastically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach is based on the following steps. Firstly, the stereo system is automatically calibrated and used to compute metric rigid structures from pairs of views. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points which have remained rigid throughout the sequence. The selected rigid points are then used to compute frame-wise shape registration and to robustly extract the motion parameters from frame to frame. Finally, all this information is used as initial estimates of a non-linear optimization which allows us to refine the initial solution and also to recover the non-rigid 3D model. Exhaustive results on synthetic and real data prove the performance of our proposal estimating motion, non-rigid models and stereo camera parameters even when there is no rigid motion in the original sequence.  相似文献   

2.
In this paper, we address the analysis of 3D shape and shape change in non-rigid biological objects imaged via a stereo light microscope. We propose an integrated approach for the reconstruction of 3D structure and the motion analysis for images in which only a few informative features are available. The key components of this framework are: 1) image registration using a correlation-based approach, 2) region-of-interest extraction using motion-based segmentation, and 3) stereo and motion analysis using a cooperative spatial and temporal matching process. We describe these three stages of processing and illustrate the efficacy of the proposed approach using real images of a live frog's ventricle. The reconstructed dynamic 3D structure of the ventricle is demonstrated in our experimental results, and it agrees qualitatively with the observed images of the ventricle.  相似文献   

3.
Active Appearance Models (AAMs) are generative, parametric models that have been successfully used in the past to model deformable objects such as human faces. The original AAMs formulation was 2D, but they have recently been extended to include a 3D shape model. A variety of single-view algorithms exist for fitting and constructing 3D AAMs but one area that has not been studied is multi-view algorithms. In this paper we present multi-view algorithms for both fitting and constructing 3D AAMs. Fitting an AAM to an image consists of minimizing the error between the input image and the closest model instance; i.e. solving a nonlinear optimization problem. In the first part of the paper we describe an algorithm for fitting a single AAM to multiple images, captured simultaneously by cameras with arbitrary locations, rotations, and response functions. This algorithm uses the scaled orthographic imaging model used by previous authors, and in the process of fitting computes, or calibrates, the scaled orthographic camera matrices. In the second part of the paper we describe an extension of this algorithm to calibrate weak perspective (or full perspective) camera models for each of the cameras. In essence, we use the human face as a (non-rigid) calibration grid. We demonstrate that the performance of this algorithm is roughly comparable to a standard algorithm using a calibration grid. In the third part of the paper, we show how camera calibration improves the performance of AAM fitting. A variety of non-rigid structure-from-motion algorithms, both single-view and multi-view, have been proposed that can be used to construct the corresponding 3D non-rigid shape models of a 2D AAM. In the final part of the paper, we show that constructing a 3D face model using non-rigid structure-from-motion suffers from the Bas-Relief ambiguity and may result in a “scaled” (stretched/compressed) model. We outline a robust non-rigid motion-stereo algorithm for calibrated multi-view 3D AAM construction and show how using calibrated multi-view motion-stereo can eliminate the Bas-Relief ambiguity and yield face models with higher 3D fidelity. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

4.
In this paper,a new method is presented for 3D motion estimation by image region correspondences using stereo cameras.Under the weak perspectivity assumption.we first employ the moment tensor theory (Cyganski and Orr^[11]) to compute the monocular affine transformations relating images taken by the same camera at different time instants and the binocular affine transformations relating images taken by different cameras at the same time instant.We then show that 3D motion can be recovered from these 2D transformations.A space-time fusion strategy is proposed to aim at robust results.No knowledge of point correspondences if requred in the above processes and the computations involved are linear.To find corresponding image regions,new affine invariants,which show stronger invariance,are derived in term of tensor contraction theory.Experiments on real motion images are conducted to verify the proposed method.  相似文献   

5.
In this paper, a technique for calibrating a camera using a planar calibration object with known metric structure, when the camera (or the calibration plane) undergoes pure translational motion, is presented. The study is an extension of the standard formulation of plane-based camera calibration where the translational case is considered as degenerate. We derive a flexible and straightforward way of using different amounts of knowledge of the translational motion for the calibration task. The theory is mainly applicable in a robot vision setting, and the calculation of the hand–eye orientation and the special case of stereo head calibration are also being addressed. Results of experiments on both computer-generated and real image data are presented. The paper covers the most useful instances of applying the technique to a real system and discusses the degenerate cases that needs to be considered. The paper also presents a method for calculating the infinite homography between the two image planes in a stereo head, using the homographies estimated between the calibration plane and the image planes. Its possible usage and usefulness for simultaneous calibration of the two cameras in the stereo head are discussed and illustrated using experiments.  相似文献   

6.
The metric reconstruction of a non-rigid object viewed by a generic camera poses new challenges since current approaches for Structure from Motion assume the rigidity constraint of a shape as an essential condition. In this work, we focus on the estimation of the 3-D Euclidean shape and motion of a non-rigid shape observed by a perspective camera. In such case deformation and perspective effects are difficult to decouple – the parametrization of the 3-D non-rigid body may mistakenly account for the perspective distortion. Our method relies on the fact that it is often a reasonable assumption that some of the points on the object’s surface are deforming throughout the sequence while others remain rigid. Thus, relying on the rigidity constraints of a subset of rigid points, we estimate the perspective to metric upgrade transformation. First, we use an automatic segmentation algorithm to identify the set of rigid points. These are then used to estimate the internal camera calibration parameters and the overall rigid motion. Finally, we formulate the problem of non-rigid shape and motion estimation as a non-linear optimization where the objective function to be minimized is the image reprojection error. The prior information that some of the points in the object are rigid can also be added as a constraint to the non-linear minimization scheme in order to avoid ambiguous configurations. We perform experiments on different synthetic and real data sets which show that even when using a minimal set of rigid points and when varying the intrinsic camera parameters it is possible to obtain reliable metric information.  相似文献   

7.
This paper proposes a robust method for recovery of motion and structure from two image sequences taken by stereo cameras undergoing a planar motion. The feature correspondences between images are extracted and refined automatically by the relation of the stereo cameras and the property of the motion. To improve the robustness, an auto-scale random sample consensus (RANSAC) algorithm is adopted in the motion and structure estimation. Unlike other work recovering epipolar geometry, here we use a random sampling algorithm to recover the 2D motion and to exclude the outliers which lie both on and out of the epipolar lines. Further more, the idea of RANSAC is used in structure estimation to exclude the outliers from the image sequence. The contribution of this work is the development of an approach to make structure and motion estimation more robust and efficient so as to be applicable to real applications. With the adoption of the auto-scale technique, the algorithm completely automates the estimation process without any prior information or user’s specification of parameters like thresholds. Indoor and outdoor experiments have been done to verify the performance of the algorithm. The results demonstrated that the proposed algorithm is robust and efficient for applications in planar motions.  相似文献   

8.
We present a new variational method for multi-view stereovision and non-rigid three-dimensional motion estimation from multiple video sequences. Our method minimizes the prediction error of the shape and motion estimates. Both problems then translate into a generic image registration task. The latter is entrusted to a global measure of image similarity, chosen depending on imaging conditions and scene properties. Rather than integrating a matching measure computed independently at each surface point, our approach computes a global image-based matching score between the input images and the predicted images. The matching process fully handles projective distortion and partial occlusions. Neighborhood as well as global intensity information can be exploited to improve the robustness to appearance changes due to non-Lambertian materials and illumination changes, without any approximation of shape, motion or visibility. Moreover, our approach results in a simpler, more flexible, and more efficient implementation than in existing methods. The computation time on large datasets does not exceed thirty minutes on a standard workstation. Finally, our method is compliant with a hardware implementation with graphics processor units. Our stereovision algorithm yields very good results on a variety of datasets including specularities and translucency. We have successfully tested our motion estimation algorithm on a very challenging multi-view video sequence of a non-rigid scene. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
Using vanishing points for camera calibration   总被引:42,自引:1,他引:42  
In this article a new method for the calibration of a vision system which consists of two (or more) cameras is presented. The proposed method, which uses simple properties of vanishing points, is divided into two steps. In the first step, the intrinsic parameters of each camera, that is, the focal length and the location of the intersection between the optical axis and the image plane, are recovered from a single image of a cube. In the second step, the extrinsic parameters of a pair of cameras, that is, the rotation matrix and the translation vector which describe the rigid motion between the coordinate systems fixed in the two cameras are estimated from an image stereo pair of a suitable planar pattern. Firstly, by matching the corresponding vanishing points in the two images the rotation matrix can be computed, then the translation vector is estimated by means of a simple triangulation. The robustness of the method against noise is discussed, and the conditions for optimal estimation of the rotation matrix are derived. Extensive experimentation shows that the precision that can be achieved with the proposed method is sufficient to efficiently perform machine vision tasks that require camera calibration, like depth from stereo and motion from image sequence.  相似文献   

10.
This paper presents a new approach of combining stereo vision and dynamic vision with the objective of retaining their advantages and removing their disadvantages. It is shown that, by assuming affine cameras, the stereo correspondences and motion correspondences, if organized in a particular way in a matrix, can be decomposed into: the 3D structure of the scene, the camera parameters, the motion parameters, and the stereo geometry. With this, the approach can infer stereo correspondences from motion correspondences, requiring only a time linear with respect to the size of the available image data. The approach offers the advantages of simpler correspondence, as in dynamic vision, and accurate reconstruction, as in stereo vision, even with short image sequences  相似文献   

11.
3-D translational motion and structure from binocular image flows   总被引:1,自引:0,他引:1  
Image flow fields from parallel stereo cameras are analyzed to determine the relative 3-D translational motion of the camera platform with respect to objects in view and to establish stereo correspondence of features in the left and right images. A two-step procedure is suggested. In the first step, translational motion parameters are determined from linear equations the coefficients of which consist of the sums of measured quantities in the two images. Separate equations are developed for cases when measurements of either the full optical flow or the normal flow are available. This computation does not require feature-to-feature correspondence. In addition, no assumption is made about the surfaces being viewed. In the second step of the calculation, with the knowledge of the estimated translational motion parameters, the binocular flow information is used to find features in one image that correspond to given features in the other image. Experimental results with synthetic and laboratory images indicate that the method provides accurate results even in the presence of noise  相似文献   

12.
F. Dornaika 《Pattern recognition》2002,35(10):2003-2012
Structure from motion and structure from stereo are two vision cues for achieving 3D reconstruction. The two cues have complementary strengths; while 3D reconstruction is accurate but correspondence establishment is difficult in the stereo cue, the reverse is true in the motion cue. This paper addresses how to combine the two cues when a stereo pair of cameras are available to capture image data for 3D reconstruction. The work is distinct in that, in contrast with the previous ones, it is not to exploit the redundancy in the image data for boosting the reconstruction accuracy, but to make the two vision cues complementary, preserving their strengths and avoiding their weaknesses. A mechanism is introduced that allows dense motion correspondences in the two separate image streams be transferred to dense binocular correspondences across the image streams, so that 3D can be reconstructed from the latter and accurate reconstruction is possible even with short motions of the stereo rig. Both the stereo correspondences and the motion of the stereo rig are assumed to be unknown in this work. Experiments involving real image data are presented to indicate the feasibility and robustness of the approach.  相似文献   

13.
自主车上的立体视觉系统一般由两台固定在平台上的定焦摄像机组成,因此摄像机内参数经一次标定后不再变化,只需要考虑外参数的标定.本文针对自主车视觉系统的特殊应用情况,提出一种基于多尺度几何分析思想的摄像机对弱定标算法,该算法采用Contourlet变换对左右图像中的角点进行检测,利用Hartley规范化8点法估计摄像机对的基础矩阵.依托现有的摄像机内部参数标定工具箱,在摄像机对弱定标的基础上还可以快速地获得摄像机对之间的外参数矩阵.实验结果表明该方法具有较好的精度.  相似文献   

14.
基于形变模型由立体序列图象恢复物体的3D形状   总被引:1,自引:0,他引:1  
结合立体视觉和形变模型提出了一种新的物体3D形状的恢复方法。采用立体视觉方法导出物体表面的3D坐标;利用光流模型估计物体的3D运动,根据此运动移动形变模型,使其对准物体的表面块;由形变模型将由各幅图象得到的离散的3D点融为一起,得到物体的表面形状。实验结果表明该方法能用于形状复杂的物体恢复。  相似文献   

15.
Our work targets 3D scenes in motion. In this article, we propose a method for view-dependent layered representation of 3D dynamic scenes. Using densely arranged cameras, we've developed a system that can perform processing in real time from image pickup to interactive display, using video sequences instead of static images, at 10 frames per second. In our system, images on layers are view dependent, and we update both the shape and image of each layer in real time. This lets us use the dynamic layers as the coarse structure of the dynamic 3D scenes, which improves the quality of the synthesized images. In this sense, our prototype system may be one of the first full real-time image -based modelling and rendering systems. Our experimental results show that this method is useful for interactive 3D rendering of real scenes  相似文献   

16.
Visual navigation is a challenging issue in automated robot control. In many robot applications, like object manipulation in hazardous environments or autonomous locomotion, it is necessary to automatically detect and avoid obstacles while planning a safe trajectory. In this context the detection of corridors of free space along the robot trajectory is a very important capability which requires nontrivial visual processing. In most cases it is possible to take advantage of the active control of the cameras. In this paper we propose a cooperative schema in which motion and stereo vision are used to infer scene structure and determine free space areas. Binocular disparity, computed on several stereo images over time, is combined with optical flow from the same sequence to obtain a relative-depth map of the scene. Both the time to impact and depth scaled by the distance of the camera from the fixation point in space are considered as good, relative measurements which are based on the viewer, but centered on the environment. The need for calibrated parameters is considerably reduced by using an active control strategy. The cameras track a point in space independently of the robot motion and the full rotation of the head, which includes the unknown robot motion, is derived from binocular image data. The feasibility of the approach in real robotic applications is demonstrated by several experiments performed on real image data acquired from an autonomous vehicle and a prototype camera head  相似文献   

17.
This paper describes novel algorithms for recovering the 3D shape and motion of deformable and articulated objects purely from uncalibrated 2D image measurements using a factorisation approach. Most approaches to deformable and articulated structure from motion require to upgrade an initial affine solution to Euclidean space by imposing metric constraints on the motion matrix. While in the case of rigid structure the metric upgrade step is simple since the constraints can be formulated as linear, deformability in the shape introduces non-linearities. In this paper we propose an alternating bilinear approach to solve for non-rigid 3D shape and motion, associated with a globally optimal projection step of the motion matrices onto the manifold of metric constraints. Our novel optimal projection step combines into a single optimisation the computation of the orthographic projection matrix and the configuration weights that give the closest motion matrix that satisfies the correct block structure with the additional constraint that the projection matrix is guaranteed to have orthonormal rows (i.e. its transpose lies on the Stiefel manifold). This constraint turns out to be non-convex. The key contribution of this work is to introduce an efficient convex relaxation for the non-convex projection step. Efficient in the sense that, for both the cases of deformable and articulated motion, the proposed relaxations turned out to be exact (i.e. tight) in all our numerical experiments. The convex relaxations are semi-definite (SDP) or second-order cone (SOCP) programs which can be readily tackled by popular solvers. An important advantage of these new algorithms is their ability to handle missing data which becomes crucial when dealing with real video sequences with self-occlusions. We show successful results of our algorithms on synthetic and real sequences of both deformable and articulated data. We also show comparative results with state of the art algorithms which reveal that our new methods outperform existing ones.  相似文献   

18.
One of the most interesting goals of computer vision is the 3D structure recovery of scenes. Traditionally, two cues are used: structure from motion and structure from stereo, two subfields with complementary sets of assumptions and techniques. This paper introduces a new general framework of cooperation between stereo and motion. This framework combines the advantages of both cues: (i) easy correspondence from motion and (ii) accurate 3D reconstruction from stereo. First, we show how the stereo matching can be recovered from motion correspondences using only geometric constraints. Second, we propose a method of 3D reconstruction of both binocular and monocular features using all stereo pairs in the case of a calibrated stereo rig. Third, we perform an analysis of the performance of the proposed framework as well as a comparison with an affine method. Experiments involving real and synthetic stereo pairs indicate that rich and reliable information can be derived from the proposed framework. They also indicate that robust 3D reconstruction can be obtained even with short image sequences.  相似文献   

19.
To estimate appearance parameters, traditional SVBRDF acquisition methods require multiple input images to be captured with various angles of light and camera, followed by a post-processing step. For this reason, subjects have been limited to static scenes, or a multiview system is required to capture dynamic objects. In this paper, we propose a simultaneous acquisition method of SVBRDF and shape allowing us to capture the material appearance of deformable objects in motion using a single RGBD camera. To do so, we progressively integrate photometric samples of surfaces in motion in a volumetric data structure with a deformation graph. Then, building upon recent advances of fusion-based methods, we estimate SVBRDF parameters in motion. We make use of a conventional RGBD camera that consists of the colour and infrared cameras with active infrared illumination. The colour camera is used for capturing diffuse properties, and the infrared camera-illumination module is employed for estimating specular properties by means of active illumination. Our joint optimization yields complete material appearance parameters. We demonstrate the effectiveness of our method with extensive evaluation on both synthetic and real data that include various deformable objects of specular and diffuse appearance.  相似文献   

20.
This paper deals with recursive reconstruction of a scene model from unknown motion of a two-camera system capturing the images of the scene. Single camera systems with a relatively small field of view have limited accuracy because of the inherent confusion between translation and rotation. Estimation results from the stereo camera systems are also compromised due to this confusion if the systems require the fields of view to intersect for stereo correspondence. The cameras constituting the two-camera system considered in this paper are arranged so that there is a small intersection of the fields of view. This configuration of divergent view improves the accuracy of the structure and motion estimation because the ambiguity mentioned above decreases due to a large field of view. In this paper, a recursive algorithm is proposed for fast scene model reconstruction using a two-camera system of divergent view. Using inversely inferred stereo correspondences in the intersection of the fields of view is also proposed to remove degeneracy of scale factor determination and to acquire more accurate results from the information redundancy. The results of the experiments with long term real image sequences are presented to demonstrate the feasibility of the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号