首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This technical note presents the ${cal L}_{1}$ adaptive control architecture for systems in the presence of unknown high-frequency gain with known sign, time-varying unknown parameters and disturbances. The ${cal L}_{1}$ adaptive controller leads to uniform performance bounds for the system's input and output signals, which can be systematically improved by increasing the adaptation rate. For constant unknown parameters, this result leads to analytically computable time-delay margin of a semiglobal nature.   相似文献   

2.
This paper proposes a method for designing an ${cal H}_{infty}$ state-feedback fuzzy controller for discrete-time Takagi–Sugeno (T-S) fuzzy systems. To derive less conservative ${cal H}_{infty}$ stabilization conditions, this paper enhances the interactions among the fuzzy subsystems using a multiple Lyapunov function with quadratic dependence on fuzzy weighting functions. Besides, for more allocation of the nonlinearity to the fuzzy control system, this paper introduces a slack variable that is quadratically dependent on the one-step-past fuzzy weighting functions as well as the current ones. In the derivation, the ${cal H}_{infty}$ stabilization conditions are formulated in terms of parameterized linear matrix inequalities (PLMIs), which are reconverted into LMI conditions with the help of an efficient relaxation technique.   相似文献   

3.
Motivated by questions in robust control and switched linear dynamical systems, we consider the problem checking whether all convex combinations of $k$ matrices in $R^{n times n}$ are stable. In particular, we are interested whether there exist algorithms which can solve this problem in time polynomial in $n$ and $k$. We show that if $k= lceil n^{d} rceil $ for any fixed real $d>0$, then the problem is NP-hard, meaning that no polynomial-time algorithm in $n$ exists provided that $P ne NP$, a widely believed conjecture in computer science. On the other hand, when $k$ is a constant independent of $n$ , then it is known that the problem may be solved in polynomial time in $n$. Using these results and the method of measurable switching rules, we prove our main statement: verifying the absolute asymptotic stability of a continuous-time switched linear system with more than $n^{d}$ matrices $A_{i} in R^{n times n}$ satisfying $0 succeq A_{i} + A_{i}^{T}$ is NP-hard.   相似文献   

4.
This technical note addresses the discrete-time Markov jump linear systems ${cal H}_{infty}$ filtering design problem. First, under the assumption that the Markov parameter is measurable, the main contribution is the linear matrix inequality (LMI) characterization of all linear filters such that the estimation error remains bounded by a given ${cal H}_{infty}$ norm level, yielding the complete solution of the mode-dependent filtering design problem. Based on this result, a robust filter design able to deal with polytopic uncertainty is considered. Second, from the same LMI characterization, a design procedure for mode-independent filtering is proposed. Some examples are solved for illustration and comparisons.   相似文献   

5.
The geometry of stable discrete polynomials using their coefficients and reflection coefficients is investigated. Two linear Schur invariant transformations with a free parameter in the polynomial coefficient space are introduced. The first transformation ${cal R}^{n}times{cal R}rightarrow{cal R}^{n}$ maps an arbitrary stable polytope into another stable polytope. The second transformation ${cal R}^{n}times{cal R}rightarrow{cal R}^{n+1}$ maps a stable tilted $n$-dimensional hyperrectangle defined by the discrete Kharitonov theorem into a stable $(n+1)$- dimensional polytope.   相似文献   

6.
This note develops a novel method for designing simultaneous $H^{infty}$ state feedback controllers for a collection of single-input nonlinear systems. Based on the Kalman—Yakubovich—Popov Lemma, necessary and sufficient conditions for the existence of simultaneous $H^{infty}$ controllers are derived by the control storage function approach. A universal formula for constructing continuous, time-invariant, simultaneous $H^{infty}$ state feedback controllers is presented.   相似文献   

7.
N-channel 6H-SiC depletion-mode junction field-effect transistors (JFETs) have been fabricated, and characterized for use in high-temperature differential sensing. Electrical characteristics of the JFETs have been measured and are in good agreement with predictions of an abrupt-junction long-channel JFET model. The electrical characteristics were measured across a 2-in wafer for temperatures from 25 $^{ circ}hbox{C}$ to 450 $^{circ}hbox{C}$, and the extracted pinchoff voltage has a mean of 11.3 V and a standard deviation of about 1.0 V at room temperature, whereas pinchoff current has a mean of 0.41 mA with standard deviation of about 0.1 mA. The change in pinchoff voltage is minimal across the measured temperature range, whereas pinchoff current at 450 $^{circ}hbox{C}$ is about half its value at room temperature, consistent with the expected change in the $nmu_{n}$ product. The characterization of differential pairs and hybrid amplifiers constructed using these differential pairs is also reported. A three-stage amplifier with passive loads has a differential voltage gain of 50 dB, and a unity-gain frequency of 200 kHz at 450 $^{circ}hbox{C}$, limited by test parasitics. A two-stage amplifier with active loads has reduced sensitivity to off-chip parasitics and exhibits a differential voltage gain of 69 dB with a unity-gain frequency of 1.3 MHz at 450 $^{circ}hbox{C}$.$hfill$[2009-0029]   相似文献   

8.
To derive less-conservative delay- and range-dependent ${cal H}_{infty }$ stabilization conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems with interval time-varying delays, the use of a fuzzy-weighting-dependent Lyapunov–Krasovskii functional (FWLKF), in which all variables are set to be affinely or quadratically dependent on fuzzy weighting functions, is proposed. Subsequently, parameterized linear matrix inequality (PLMI)-based ${cal H}_infty$ stabilization conditions are derived by following the free-weighting matrix approach. To fully exploit the convexity of fuzzy weighting functions, the derived PLMIs are sequentially replaced by a finite set of LMIs by considering all possible conditions associated with fuzzy weighting functions.   相似文献   

9.
Three ways to approximate a proximity relation $R$ (i.e., a reflexive and symmetric fuzzy relation) by a $T$ -transitive one where $T$ is a continuous Archimedean $t$-norm are given. The first one aggregates the transitive closure $overline{R}$ of $R$ with a (maximal) $T$-transitive relation $B$ contained in $R$ . The second one computes the closest homotecy of $overline{R}$ or $B$ to better fit their entries with the ones of $R$. The third method uses nonlinear programming techniques to obtain the best approximation with respect to the Euclidean distance for $T$ the $Lstrok$ukasiewicz or the product $t$-norm. The previous methods do not apply for the minimum $t$-norm. An algorithm to approximate a given proximity relation by a ${rm Min}$-transitive relation (a similarity) is given in the last section of the paper.   相似文献   

10.
The minimum-variance fixed-interval smoother is a state-space realization of the Wiener solution generalized for time-varying problems. It involves forward and adjoint Wiener-Hopf factor inverses in which the gains are obtained by solving a Riccati equation. This technical note introduces a continuous-time ${rm H}_{infty}$ smoother having the structure of the minimum-variance version, in which the gains are obtained by solving a Riccati equation that possesses an indefinite quadratic term. It is shown that the smoother exhibits an increase in mean-square-error, the error is bounded, and the upper error bound is greater than that for the ${rm H}_{infty}$ filter.   相似文献   

11.
Asymptotic gain and adaptive control are studied for persistent dwell-time switched systems. Ultimate variations of auxiliary functions are considered for existence of asymptotic gain and a gauge design is introduced for switching-uniform adaptive control by partial state feedback and output feedback of switched systems subject to unmeasured dynamics and persistent dwell-time switching. The usage of the controlled dynamics as a gauge for the instability mode of the unmeasured dynamics makes it possible to design a control rendering the evolution of the overall system interchangeably driven by the stable modes of the controlled and unmeasured dynamics. Unmeasured-state dependent control gains are dealt with and unknown time-varying parameters are attenuated via asymptotic gain. Verification of asymptotic gain conditions is based on the relation between dissipation rates of unmeasured dynamics and timing characterizations ${mmbtau}_{bf p}$ and ${mmb T}_{bf p}$ of switching sequences.   相似文献   

12.
This paper examines the use of deep reactive ion etching of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of an $hbox{SiO}_{x}hbox{F}_{y}$ polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the $ hbox{O}_{2}$ flow rate and the capacitively coupled plasma power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using electron-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 $muhbox{m}$ , and 2 $muhbox{m}$. $hfill$[2008-0317]   相似文献   

13.
This paper describes a decentralized $H_{infty }$ filter design for discrete-time interconnected fuzzy systems based on piecewise-quadratic Lyapunov functions. The systems consist of $J$discrete-time interconnected Takagi–Sugeno (T–S) fuzzy subsystems, and a decentralized $H_infty$ filter is designed for each subsystem. It is shown that the stability of the overall filtering-error system with $H_{infty }$ performance can be established if a piecewise-quadratic Lyapunov function can be constructed. Moreover, the parameters of filters can be obtained by solving a set of linear matrix inequalities that are numerically feasible. Two simulation examples are given to show the effectiveness of the proposed approach.   相似文献   

14.
This paper investigates delay-dependent $hbox{H}_{bminfty }$ filter design problems for discrete-time fuzzy systems with time-varying delays. First, a novel delay-dependent piecewise Lyapunov–Krasovskii functional (DDPLKF) is proposed in which both the upper bound of delays and the delay interval are considered. Based on this DDPLKF, the delay-dependent stability criteria for discrete-time systems with constant or time-varying delays are obtained, respectively. Then, delay-dependent full-order and reduced-order $hbox{H}_{bminfty }$ filter design approaches are proposed. The filter parameters can be obtained by solving a set of linear matrix inequalities (LMIs). Simulation examples are also given to illustrate the performance of the proposed approaches. It is shown that our approaches are less conservative and that the corresponding $hbox{H}_{bminfty }$ filters can achieve better performance than the existing approaches.   相似文献   

15.
This paper describes the development of aluminum nitride (AlN) resonant accelerometers that can be integrated directly over foundry CMOS circuitry. Acceleration is measured by a change in resonant frequency of AlN double-ended tuning-fork (DETF) resonators. The DETF resonators and an attached proof mass are composed of a 1- $muhbox{m}$ -thick piezoelectric AlN layer. Utilizing piezoelectric coupling for the resonator drive and sense, DETFs at 890 kHz have been realized with quality factors $(Q)$ of 5090 and a maximum power handling of 1 $muhbox{W}$. The linear drive of the piezoelectric coupling reduces upconversion of $1/f$ amplifier noise into $1/f^{3}$ phase noise close to the oscillator carrier. This results in lower oscillator phase noise, $-$96 dBc/Hz at 100-Hz offset from the carrier, and improved sensor resolution when the DETF resonators are oscillated by the readout electronics. Attached to a 110-ng proof mass, the accelerometer microsystem has a measured sensitivity of 3.4 Hz/G and a resolution of 0.9 $hbox{mG}/surdhbox{Hz}$ from 10 to 200 Hz, where the accelerometer bandwidth is limited by the measurement setup. Theoretical calculations predict an upper limit on the accelerometer bandwidth of 1.4 kHz.$hfill$ [2008-0190]   相似文献   

16.
Bilevel-programming techniques are developed to handle decentralized problems with two-level decision makers, which are leaders and followers, who may have more than one objective to achieve. This paper proposes a ${lambda}$-cut and goal-programming-based algorithm to solve fuzzy-linear multiple-objective bilevel (FLMOB) decision problems. First, based on the definition of a distance measure between two fuzzy vectors using ${lambda}$-cut, a fuzzy-linear bilevel goal (FLBG) model is formatted, and related theorems are proved. Then, using a ${lambda}$-cut for fuzzy coefficients and a goal-programming strategy for multiple objectives, a ${lambda}$-cut and goal-programming-based algorithm to solve FLMOB decision problems is presented. A case study for a newsboy problem is adopted to illustrate the application and executing procedure of this algorithm. Finally, experiments are carried out to discuss and analyze the performance of this algorithm.   相似文献   

17.
Analytical Model of Valveless Micropumps   总被引:2,自引:0,他引:2  
The flow driven by a valveless micropump with a single cylindrical pump chamber and two diffuser/nozzle elements is studied theoretically using a 1-D model. The pump cavity is driven at an angular frequency $omega$ so that its volume oscillates with an amplitude $V_{rm m}$. The presence of diffuser/nozzle elements with pressure-drop coefficients $zeta_{+}$, $zeta_{-}( ≫ zeta_{+})$ and throat cross-sectional area $A_{1}$ creates a rectified mean flow. In the absence of frictional forces the maximum mean volume flux (with zero pressure head) is $Q_{0}$ where $Q_{0}/V_{rm m}omega = (zeta_{-} -break zeta_{+})pi/16(zeta_{-}+zeta_{+})$, while the maximum pressure that can be overcome is $Delta P_{max}$ where $ Delta P_{max}A_{1}^{2}/V_{rm m}^{2} omega^{2} !=! (zeta_{-} -break zeta_{+})/16$. These analytical results agree with numerical calculations for the coupled system of equations and compare well with the experimental results of Stemme and Stemme.$hfill$ [2008-0244]   相似文献   

18.
This brief addresses the stability analysis problem for stochastic neural networks (SNNs) with discrete interval and distributed time-varying delays. The interval time-varying delay is assumed to satisfy $0≪d_{1}leq d(t) leq d_{2}$ and is described as $d(t)= d_{1}+h(t)$ with $0leq h(t) leq d_{2}-d_{1}$. Based on the idea of partitioning the lower bound $d_{1}$, new delay-dependent stability criteria are presented by constructing a novel Lyapunov–Krasovskii functional, which can guarantee the new stability conditions to be less conservative than those in the literature. The obtained results are formulated in the form of linear matrix inequalities (LMIs). Numerical examples are provided to illustrate the effectiveness and less conservatism of the developed results.   相似文献   

19.
This paper describes different approaches to achieve high-performance microfabricated silicon-glass separation columns for microgas chromatography systems. The capillary width effect on the separation performance has been studied by characterization of 250-, 125-, 50-, and 25-$muhbox{m}$ -wide single-capillary columns (SCCs) fabricated on a $10 times 8 hbox{mm}^{2}$ die. The highest plate number (12 500/m), reported to date for MEMS-based silicon-glass columns, has been achieved by 25-$muhbox{m}$-wide columns coated by a thin layer of polydimethylsiloxane stationary phase using static coating technique. To address the low sample capacity of these narrow columns, this paper presents the first generation of MEMS-based “multicapillary” columns (MCCs) consisting of a bundle of narrow-width rectangular capillaries working in parallel. The theoretical model for the height-equivalent-to-a-theoretical-plate $(HETP)$ of rectangular MCCs has been developed, which relates the $HETP$ to the discrepancies of the widths and depths of the capillaries in the bundle. Two-, four-, and eight-capillary MCCs have been designed and fabricated to justify the separation ability of these columns. These MCCs capable of multicomponent gas separation provide a sample capacity as large as 200 ng compared to 5.5 ng for 25-$muhbox{m}$-wide SCCs.$hfillhbox{[2007-0309]}$   相似文献   

20.
Liquid-metal (LM) droplet-based MEMS switches have mostly been restricted to slow applications until now due to the following reasons: 1) a relatively large switching gap (distance) needed to accommodate imprecise volumes and locations of droplets on the device and 2) lack of high-speed actuation to move the droplets quickly across the switching gap. To combat these problems, we explore switching by sliding the solid–LM–gas triple contact line rather than the entire droplet. This new approach allows us to use a microframe, which not only consistently positions the LM droplet but also makes the switching gap less sensitive to the errors in the deposited-droplet volume, allowing us to design microswitches with very small switching gaps (e.g., 10 $muhbox{m}$ for 600 $muhbox{m}$-diameter droplets). Furthermore, a study of electrowetting-on-dielectric identifies a regime of fast contact-line sliding at the onset of droplet spreading. By moving the contact line fast across a small switching distance, we demonstrate a low-latency LM switch with 60 $muhbox{s}$ switch-on latency ( $sim$20 times better than other LM-switch technologies) and better than 5 $muhbox{s}$ signal rise/fall time, while boasting no contact bounce, as expected from an LM switch. High power-handling capability and long-term reliability are also discussed. $hfill$[2008-0135]   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号