首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous molecular sieve MCM-41 with a Si/Al ratio of 35 was obtained by hydrothermal synthesis using a gel mixture with a molar composition of 6 SiO20.1 Al2O31 hexadecyltrimethylammonium chloride 0.25 dodecyltrimethylammonium bromide 0.25 tetrapropylammonium bromide0.15 (NH4)2O1.5 Na2O300 H2O. The MCM-41 sample was calcined in O2 flow at 813 K and subsequently ion exchanged with Ca2+. A small Pt cluster has been supported on the MCM-41 sample following a procedure using ion exchange of Pt(NH3) 4 2+ . The Pt(NH3) 4 2+ ion supported on MCM-41 has been activated in O2 flow at 593 K and subsequently reduced with Fh flow at 573 K, in the same way used for the preparation of a Pt cluster entrapped inside the supercage of zeolite NaY. The resulting Pt cluster supported on the MCM-41 shows hydrogen chemisorption oftotal two H atoms per Pt at 296 K (based on the total amount of Pt) and high catalytic activity for hydrogenolysis of ethane. The chemical shift in129Xe NMR spectroscopy of adsorbed xenon indicates that the Pt cluster is located inside the mesoporous molecular sieve.  相似文献   

2.
Catalytic decomposition of nitrous oxide (N2O) to N2 and O2 has been studied on a series of solid oxide solutions of La, Sr and Cu according to the nominal formula La2–x Sr x CuO4 (0x1). The reaction has been carried out in a fixed bed, glass static reactor with gas-recirculation facility. The kinetics of decomposition has been studied in the temperature range 250–480C. Among the catalysts studied,x=0.15 andx=1.0 showed higher catalytic activity (in terms of %conversion). The enhanced activity of the above systems has been explained on the basis of mixed valency of copper (Cu2+/Cu3+) and anion vacancies respectively.  相似文献   

3.
ESR and XPS are used to study the Mo-based catalysts MoO3/K2CO3/SiO2 and K2MoO4/SiO2 prepared with two kinds of precursors, (NH4)6Mo7O244H2O and K2MoO4. The catalytic properties of the catalysts for methanethiol synthesis from high H2S-containing syngas are explored. The activity assay shows that the two catalysts have much the same activity for the reaction. By the ESR characterization of both functioning catalysts, the resonant signals of oxo-Mo(V) (g=1.93), thio-Mo(V) (g=1.98) and S (g=2.01 or 2.04) can be detected. In the catalyst MoO3/SiO2 modified with K2CO3, as increasing amounts of K2CO3 are added, the content of oxo-Mo(V) increases, but thio-Mo(V) decreases. The XPS characterization indicates that Mo has mixed valence states of Mo4+, Mo5+ and Mo6+, and that S includes three kinds of species: S2– (161.5 eV), [S–S]2– (162.5 eV) and S6+ (168.5 eV). Adding K2CO3 promoter to the catalysts, the Mo species of high valence state is easily sulphided and reduced to Mo2S and oxo-M(V), and the derivation of [S–S]2– and S2– species from S is promoted simultaneously. The methanethiol synthesis is favored if the mole ratio of (Mo6+ + Mo5+)/Mo4+ 0.8 and S2–/[S–S]2– is kept at a value of about 1.  相似文献   

4.
CdSe x Te1–x thin films with 0 < x < 1 were deposited on titanium and conducting glass substrates by pulse electrodeposition using microprocessor control. Formation of the solid solution takes place for values of x(0 < x < 1). The films were characterized by X-ray diffraction. While the as-deposited films are cubic in nature, those annealed at 475 °C in air indicate hexagonal structure and the lattice parameters increase with increasing value of x. From the optical absorption measurements the band gap of the material was calculated. The value of the band gap varies from 1.42 to 1.70 eV as x varies from 0 to 1. The photoelectrochemical (PEC) characteristics were obtained for all compositions of CdSe x Te1–x (x = 0–1). The output parameters for CdSe0.66Te0.34 with 9% duty cycle at an intensity of 80 mW cm–2 using 1 M polysulphide as the redox electrolyte, are V OC of 398 mV, J SC of 5.59 mA cm–2, ff of 0.45, of 4.73%, R s of 13 , R sh of 1.50 k. The output parameters were found to increase with 60 ms pulse reversal. After photoetching for 40 s, a V OC of 481 mV, J SC of 16.00 mA cm–2, ff of 0.57, of 5.46%, R s of 6 , R sh of 2.16 k were obtained.  相似文献   

5.
Platinum particles (<1.5 nm) have been shown to behave as bases in their interaction with -alumina. FTIR spectra of adsorbed pyridine probe molecules showed that the acid strength of the -alumina was decreased by the presence of (<1.5 nm) Pt particles. Ammonium chloride treatment converts the primary Pt clusters to H x Pt y Cl z intermediates that de-anchor from the support. Consequently, agglomeration to 8 nm Pt particles was observed following treatment in hydrogen at a relatively mild temperature. For the treated catalyst the IR data of absorbed pyridine show a 3 cm-1 increase relative to the original Pt/-Al2O3 catalyst, indicating a strengthening of the acidity. Changes in the Pt particle size were confirmed by FTIR spectroscopy of CO absorbed onto the Pt particles before and after treatment. Consecutive CO and pyridine probe adsorption demonstrated the electronic interplay between the Pt particles and the support. Pyridine adsorption onto the -alumina support of a Pt/Al2O3 catalyst pre-dosed with CO produces a nearly 40 cm-1 lowering of the CO peak position, indicative of CO bond weakening. In the case of CO adsorbed onto a catalyst pre-dosed with pyridine, a shift in the pyridine IR spectrum was only observed from the original highly dispersed catalyst.  相似文献   

6.
The selective oxidation of methane with molecular oxygen over MoOx/La–Co–O and MoOx/ZrO2 catalysts to methanol/formaldehyde has been investigated in a specially designed high-pressure continuous-flow reactor. The properties of the catalysts, such as crystal phase, structure, reducibility, ion oxidation state, surface composition and the specific surface area have been characterized with the use of XRD, LRS, TPR, XPS and BET methods. MoOx/La–Co–O catalysts showed high selectivity to methanol formation while MoOx/ZrO2 revealed the property for the formation of formaldehyde in the selective oxidation of methane. 7 wt MoOx/La–Co–O catalyst gave 6.7 methanol yield (ca. 60 methanol selectivity) at 420°C and 4.2 MPa. On the other hand, the maximal yield of formaldehyde ca. 4 (47.8 formaldehyde selectivity) was obtained over 12wt MoOx/ZrO2 catalyst at 400 °C and 5.0MPa. 7MoOx/La–Co–O catalyst showed higher modified H2-consumption than 12MoOx/ZrO2 catalyst. The reducibility and the O/O2– ratio of the catalysts may play important roles on the catalytic performance. The proper reducibility and the O/O2– ratio enhanced the production of methanol in selective oxidation of methane. [MoO4]2– species in MoOx/ZrO2 catalysts enable selective oxidation of methane to formaldehyde.  相似文献   

7.
ESR and Raman spectroscopy have been used to characterize monolayers of vanadia, which had been immobilized on titania and on a 20% TiO2/80% SiO2 mixed oxide support from a vanadyl alkoxide precursor. Characteristic vibrations observed in the Raman spectrum, as well as UV-visible reflection data, indicate that the most abundant vanadia species on the surface consists of disordered polymeric arrays: the central vanadium ion is surrounded by the tightly bound vanadyl oxygen, four oxygen ions in the basal plane, and a distant sixth oxygen ligand in bridging position to the support. From the ESR spectra the principal values ofg andA tensors are obtained, and their dependence on the support material and on the vanadia loading is investigated. Comparison with TPR measurements indicates that for structurally and chemically similar catalysts, the ESR-derived deviationg = g – g e from the free electrong value provides a useful measure of the V=O bond strength.  相似文献   

8.
Equilibrium exchange isotherms were determined for the exchange of Cu2+ with NaZSM-5 at varying Cu(Ac)2 concentrations in solutions of constant volume and zeolite weight. At low Cu2+ levels the solid scavenged all the copper ions. When copper could be detected in the equilibrated solutions, overexchange was observed. The extent of overexchange was higher at pH 6 than at pH 4. These results were analyzed in relation to catalytic activity.On leave from the Central Institute for Chemistry, Hungarian Academy of Sciences, H1525 Budapest, Hungary.  相似文献   

9.
Granger  P.  Lamonier  J.F.  Sergent  N.  Aboukais  A.  Leclercq  L.  Leclercq  G. 《Topics in Catalysis》2001,16(1-4):89-94
The intrinsic activity of various Zr x Ce1–x O2 mixed oxides and after a Pd deposition has been investigated in the CO + NO reactions from temperature-programmed experiments performed under stoichiometric conditions. It has been found that the activity of Zr x Ce1–x O2 depends on either the specific surface area or the number of Ce cations and their intrinsic activity, Zr0.5Ce0.5O2 being the most active support. The addition of palladium strongly enhances the catalytic activity of the supports probably due to a synergistic effect between CeO2 and the metal since the initial activity of palladium-based catalysts is directly related to their Ce content. Such a catalytic enhancement has been explained by a bifunctional mechanism involving active sites probably composed of Pd and ceria. A strong deactivation operates leading to the disappearance of the beneficial effect of ceria. Such a deactivation seems to be dependent on the support composition, Pd supported Zr0.25Ce0.75O2 being the most resistant to deactivation.  相似文献   

10.
The gas-phase hydrogenation of benzene to cyclohexane over Ce1 - x Pt x O2 - (x = 0.01, 0.02) catalyst was investigated in the temperature range 80-200 °C. A 42% conversion of benzene to cyclohexane with 100% specificity was observed at 100 °C over Ce0.98Pt0.02O2 - with a catalyst residence time of 1.22 × 104 g s/mol of benzene. The activity of the catalyst was compared with those of Pt metal, combustion-synthesized Pt/-Al2O3 and Pt/-Al2O3. The turnover frequency value of Ce0.98Pt0.02O2 - is 0.292, which is an order of magnitude higher than those of the other Pt catalysts investigated. The kinetics of reaction and the deactivation behavior of the catalyst were studied and a regeneration methodology was suggested. The deactivation kinetics and structural evidence from XRD, XPS, TGA and H2 uptake studies suggest that the oxidized Pt in Ce0.98Pt0.02O2 - is responsible for the high catalytic activity towards benzene hydrogenation.  相似文献   

11.
Acid polymers, –[N=P(OC6H5)2–x (OC6H4SO3H) x ] n (II), having an entirely inorganic chain of fifth-group elements, with acid equivalent values between 2.90 and 5.19 mEq/g and molecular weights (M w) of 105–106 (205n3582), have been obtained from –[N=P(OC6H5)2]– n (I), 4325n 20,300, in very strong acid medium (SO3/–P=N –=1.15–3.10 mol/mol). Sulfonation of the pendant substituents occurs first in the meta position and successively at the para carbons, presumably due to reduced conformational mobility as the degree of substitution (x) in II increases.  相似文献   

12.
Peculiarities in catalytic activity in carbon monoxide oxidation as well as some structure, electronic and magnetic properties of the three oxide catalysts, Mn3+–O/Al2O3 (1), Mn3+–O–Fe/Al2O3 (Mn-substituted spinel, 2) and -Fe2O3/Al2O3 (3), were studied by kinetic measurements and by Mössbauer spectroscopy. The catalysts 1 and 2 showed a kinetic bistability with a sharp transition towards more reactive state at 200°C (ignition point). In contrast, for catalyst 3, at 200–250°C, the behavior of reaction rate against temperature did not display noticeable hysteresis. On cooling the catalysts 1 and 2, extinction was observed at about 170 and 120°C, respectively, i.e., at 30–80°C lower than the corresponding ignition points. Proximity of activation energy for the high and low activity (15–19 kJ/mol) for both Mn-containing catalysts suggests an increase in the number of active sites at high temperature with no changes in the reaction mechanism. The considerable difference between Mn-containing catalysts 1, 2 and Fe-containing catalyst 3 may be caused by Jahn–Teller (JT) type distortions of the oxygen polyhedron around Mn3+. A significant spontaneous axial bond stretching within the local polyhedron seems to diminish Mn–O binding energy, facilitate the participation of surface oxygen species, OS, in the oxidation of CO by a redox mechanism and promote oxygen vacancies at the surface that would cause considerable effect on the activity. An increase in the width of the counterclockwise hysteresis loop for the catalyst 2 compared to the catalyst 1 indicates that clusters of mixed spinel provide more active sites and more labile OS species than clusters of the binary Mn oxide.  相似文献   

13.
The surface of Pt clusters with average size between 1 and 8 nm supported on SiO2, -Al2O3 or Y-zeolite was probed by129Xe NMR as the Pt surface coverage with hydrogen, , was increased. A distinct change in the structure of the hydrogen overlayer at 0.3 was inferred from the NMR spectra. This change is believed to take place when the chemisorbed hydrogen fills all the next nearest neighbor metal sites and the nearest neighbors start to be occupied. These new observations clarify previously reported determinations of the average number of Pt atoms in supported clusters by means of Xe NMR and other techniques. It also appears that interfacial metal-support interactions may be probed by Xe NMR.  相似文献   

14.
H. He  H.X. Dai  K.Y. Ngan  C.T. Au 《Catalysis Letters》2001,71(3-4):147-153
The physico-chemical properties of passivated -Mo2N have been investigated. The material showed high activities for NO direct decomposition: nearly 100% NO conversion and 95% N2 selectivity were achieved at 450C. The amount of O2 taken up by -Mo2N increased with temperature rise and reached 3133.9 molg–1 at 450C; we conclude that there formation of Mo2OxNy occurred. This oxygen-saturated -Mo2N material was catalytically active: NO conversion and N2 selectivity were 89 and 92% at 450C. We found that by means of H2 reduction at 450C, Mo2OxNy could be reduced back to -Mo2N and the oxidation/reduction cycle is repeatable; such a behaviour and the high oxygen capacity (3133.9 molg–1) of -Mo2N suggest that -Mo2N is a promising catalytic material for automobile exhaust purification.  相似文献   

15.
Nanopowders of solid solutions with different compositions are prepared in the zirconia-enriched region of the ZrO2-CeO2 system. The crystallization of these powders and the formation of the monoclinic, cubic, and tetragonal solid solutions of the composition (Zr1 – x Cex)O2 are investigated. It is found that the unit cell parameters of the solid solutions increase as the cerium content increases. This confirms the fact that cerium ions [r(Ce4+) = 1.11 ] substitute for zirconium ions [r(Zr4+) = 0.98 ] in these solid solutions. The average size of crystallites of the solid solutions under investigation increases from 5 to 60 nm in the temperature range 500–1200°C.Original Russian Text Copyright © 2005 by Fizika i Khimiya Stekla, Panova, Glushkova, Nefedova.  相似文献   

16.
Catalytic light-off of a stream of NO, H2, CO in an excess O2 has been studied over various metal oxides loading 1 wt% Pt. Because a low-surface area Y2O3 (<5 m2 g−1) was found to exhibit the highest de-NOx activity, a mesoporous Y2O3 was then synthesized from an yttrium-based surfactant mesophase templated by dodecyl sulfate , which was anion-exchanged by acetate (AcO = CH3COO). The product showed a 3-D mesoporosity with a large surface area (396 m2 g−1) and the Pt-supported catalyst achieved much improved light-off characteristics suitable for the low-temperature de-NOx in the presence of CO and excess O2.  相似文献   

17.
The extent to which the initial impedance characteristics of a batch of LR6 alkaline manganese cells determine their life and therefore capacity during a typical 2 A/10 s pulse discharge regime has been investigated, and the importance of thermodynamic factors have also been considered. It is shown that the potential drop (E-V pulse) for the initial discharge cycle can be calculated approximately from a knowledge of the initial internal resistance value, and the recovery voltage,V rec, can be calculated using a simple thermodynamic theory for the homogeneous phase discharge of -MnO2. During subsequent cycles the polarization of the cathode-can assembly remains approximately constant at 300 mV while that of the anode-separator system increases progressively from 100 mV to >300 mV. The constancy of the former parameter can be attributed to constancy in the cathode contribution to the internal resistance, whereas the changes in the latter can be ascribed to increases in anode resistance polarization and anode concentration polarization. Minimization of cell internal resistance and anode polarization are therefore of primary concern if cell performance is to be maximized.Nomenclature E initial open-circuit voltage - V pulse cell voltage att=10 s - V pulse cell voltage att=10 s for the first pulse - V rec open-circuit voltage at the end of a 50-s recovery period - V total polarization of the cell - V A anode polarization (anode-separator system) - V C cathode polarization (cathode-can assembly) - ohmic polarization - NT charge-transfer polarization - C concentration polarization - R i cell internal resistance - R e electrolyte resistance - R part cath contact resistance between cathode particles or within the particles themselves - R cath effective resistance of cathode-can assembly - R i cath contact resistance at the interface between the nickel oxide phase and the cathode (MnO2 + graphite mixture) - R phase cath resistance of the nickel oxide phase on the surface of the nickel-plated steel positive current collector (cell can) - R 2 cath contact resistance at the interface between the nickel oxide layer on the can surface and the can itself - R high frequency intercept on complex plane impedance diagram - R diameter of the complex plane impedance semicircle - f * characteristic frequency at the top of the complex plane semicircle - C effective parallel capacitance in the equivalent circuit for a cell attributed to the cathode-can assembly - c MnO2 concentration of MnO2 at any point in the discharge - cMnO 2 0 maximum MnO2 concentration at 100% efficiency - c MnOOH concentration of MnOOH at any point in the discharge - c MnOOH 0 maximum MnOOH concentration at 100% efficiency - proton-electron spatial correlation coefficient - I total current - i R current through resistanceR - i c current through capacitor - V p voltage drop across parallel R-C circuit - A anode - C cathode - obs observed - calc calculated  相似文献   

18.
[Pt9(CO)18]2–/NaY (orange-brown, 2056 and 1798 cm–1), [Pt12(CO)24]2–/NaY (dark-green, 2080 and 1824 cm–1 and [Pt15(CO)30]2–/NaX (yellow-green, 2100 and 1865 cm–1) were stoichiometrically synthesized by the reductive carbonylation of [Pt(NH3)4]2+/NaY, Pt2+/NaY and Pt2+/NaX, respectively. The IR bands characteristic of their linear carbonyls shift to higher frequencies whereas the bridging CO bands to lower frequencies, compared with those on the external zeolites and in solution. In-situ FTIR studies suggested that the subcarbonyl species such as PtO(CO) and Pt3(CO)3(2 –CO)3 are formed as the proposed intermediates towards [Pt12(CO)24]2–/NaY in the reductive carbonylation of Pt2+/NaY.13CO exchange reaction preceded with the different intrazeolite Pt carbonyl species in the following order of activity at 298–343 K: Pt3(CO)3(2 –CO)3/NaY PtO(CO)/NaY>[Pt9(CO)18]2–/NaY >[Pt12(CO)24]2–/NaY. Pt-L3-edge EXAFS measurment for these synthesized samples demonstrated that they are consistent with the Pt carbonyl clusters having trigonal prismatic Pt9 and Pt12 frameworks infered to a series of the Chini complexes such as [NEt4]2[Pt3(CO)6] n ( n = 3–5). The intrazeolite Pt9 and Pt12 carbonyl clusters exhibited higher cataytic activity in NO reduction by CO towards N2 and N2O at 473 K, compared with those on the conventional Pt/Al2O3 catalysts. The mechanism of intrazeolite Pt9-Pt15 carbonyl cluster formation are discussed in terms of the intrazeolite basicity and acidity.On leave from National Laboratory for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 129 Street, China.  相似文献   

19.
Adsorption of CO onto dehydrated cobalt-exchanged ZSM-5 zeolite was studied by CW-EPR techniques. It is shown that the reversible formation of a low spin carbonyl 1{Co(CO) n }7 adduct upon addition of carbon monoxide at p CO>50–60 Torr involves significant change in the spin state of Co2+ from S=3/2 to 1/2. The spin Hamiltonian parameters of the adduct g x =2.222, g y =2.184, g z =2.011, |A x |=3.8 mT, |A y |=3.2 mT, |A z |=7.9 mT were determined by a computer simulation and further discussed in terms of the possible ground state and molecular structure. It is shown that the 1{Co(CO) n }7 cage complex exhibits a C2v symmetry with |z 2,2A1 ground state.  相似文献   

20.
A conceptual picture is developed to explain the peculiar kinetic features of methane oxidation over supported Pd catalysts (observed by several investigators), notably the hysteresis in activity accompanying temperature cycles. Experiments were performed with supported Pdcatalysts to illustrate these features. The activity hysteresis is closely coupled with a hysteresis in oxygen content. The latter is in turn attributed to the properties of the PCT-diagram of the involved three-phase system; gas phase O2 and the two solid phases, Pd and PdOx. The two main ingredients in the mechanism are: (i) the so-called absorption and decomposition plateau pressures for the O2-Pd-PdO x system are different, i.e., show a hysteresis, (ii) these pressures are not independent ofx, but increase with increasing oxygen content. Both features are deviations from the ideal three-phase system and are frequently observed for H2-metalmetal hydride systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号