首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Two groups of male Fisher 344 rats (young: 4 months old; aged: 25 months old) underwent either 70% distal small bowel resection or sham operation (small bowel transection). Rats from each treatment group of each age were sacrificed on the 10th (N = 15: young rats; N = 13: aged rats) or 20th (N = 15: young; N = 13: aged) postoperative day (POD), and the duodenal mucosa was weighed and assayed for DNA, RNA, and protein contents, as well as for specific activities of the disaccharidase, sucrase, maltase, and lactase. Compared to the sham operation, distal small bowel resection significantly increased DNA by 48%, RNA by 122%, and protein by 75% in young rats and DNA by 40%, RNA by 92%, and protein by 71% in aged rats on the 20th POD. Both young and aged rats showed similar adaptive hyperplasia on the 10th POD. On the 20th POD after distal small bowel resection, specific activities of all tested enzymes were significantly increased in young rats (sucrase +86%, maltase +110% and lactase +64%), but showed no significant changes in aged rats. These findings suggest that the duodenum of aged rats may have sufficient proliferative potential to respond to distal small bowel resection, but that the mechanisms governing return of function in response to distal small bowel resection are inhibited in aged rats, compared to those mechanisms in the young.  相似文献   

2.
There is evidence that during lactation, uptake of the essential branched-chain amino acids (BCAA) by mammary glands exceeds their output in milk protein. In this study, we have measured the potential of lactating rats to catabolize BCAA. The activity, relative protein and specific mRNA levels of the first two enzymes in the BCAA catabolic pathway, branched-chain aminotransferase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD), were measured in mammary gland, liver and skeletal muscle obtained from rat dams at peak lactation (12 d), from rat dams 24 h after weaning at peak lactation and from age-matched virgin controls. Western analysis showed that the mitochondrial BCATm isoenzyme was found in mammary gland. Comparison of lactating and control rats revealed that tissue BCATm activity, protein and mRNA were at least 10-fold higher in mammary tissue during lactation. Values were 1.3- to 1. 9-fold higher after 24 h of weaning. In mammary gland of lactating rats, the BCKD complex was fully active. In virgin controls and weaning dams, only about 20% of the complex was in the active state. Hypertrophy of the liver and mammary gland during lactation resulted in a 73% increase in total oxidative capacity in lactating rats. The results are consistent with increased expression of the BCATm gene in the mammary gland during lactation, whereas oxidation appears to be regulated primarily by changes in activity state (phosphorylation state) of BCKD.  相似文献   

3.
4.
5.
6.
7.
Increased ornithine decarboxylase (ODC) activity is associated with rapid cell proliferation in many cell types. The cellular effects of early weaning on intestinal development are not well established. To investigate whether ODC is involved in intestinal growth after early weaning, we precociously weaned suckling rats on postnatal d 15 and followed through d 21 (6 d after early weaning). Age-matched suckling pups served as controls. Rat pups were killed 1, 2, 3 and 6 d after early weaning and jejunal mucosa was assayed for ODC and sucrase activities, and protein and DNA contents. Jejunal cell proliferation was monitored by bromodeoxyuridine immunohistochemistry. Elevated jejunal ODC activity 1 d after early weaning was the earliest cellular event that was detected in the current study. ODC activity peaked at d 3 (about 15-fold greater than age-matched unweaned suckling controls). Sucrase activity was elevated at d 2 after weaning and peaked at d 3 (about 10-fold greater than controls). Greater bromodeoxyuridine immunostaining in early weaned rats occurred on d 3. Protein and DNA contents were greater in jejunal mucosa of early weaned rats at d 6. Serum corticosterone levels were elevated on d 1 and d 2 after early weaning compared to controls. To explore whether the intake of nonpurified diet played a role, we also compared the induction of jejunal ODC activity in early weaned pups and pups that were food-deprived for 1 d. ODC activity was not greater in the food-deprived group compared to suckling controls while the early weaned group had 6-fold greater activity 1 d after early weaning. Early weaning stimulates jejunal cell proliferation and differentiation. The temporal sequence of increased ODC activity followed by increases in other growth variables suggests that the induction of ODC activity may act as an early marker of intestinal growth during early weaning.  相似文献   

8.
Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step in adipocyte lipolysis. The activity of HSL is thought to be primarily regulated by reversible phosphorylation. However, the regulation of HSL activity by pre-translational mechanisms has been poorly studied. The present studies were undertaken to explore the relationship between the levels of HSL protein and mRNA expressions and the lipolytic capacity. The study was performed in human abdominal subcutaneous adipocytes with identical sizes but having either a high (HL) or low (LL) lipolytic capacity (n = 16). Basal and maximal lipolysis induced by catecholamines, an adenylyl cyclase activator forskolin, and a cyclic AMP analogue dibutyryl cAMP were 50% lower in LL- in comparison with HL-fat cells (P < 0.05 or better). No differences in drug sensitivity were found. HSL activity and quantity were about 50% lower in LL- compared with HL-fat cells (P < 0.05). Moreover, the mRNA ratio between HSL and gamma-actin was 35% lower in LL- compared with HL-fat cells (P < 0.05). There was a strong linear correlation between the protein and enzymatic HSL measurements (r2 = 0.91). In addition, the maximum lipolytic capacity was significantly correlated with HSL activity (r2 = 0.75) and HSL protein amount (r2 = 0.64). It is concluded that hormone-sensitive lipase (HSL) expression, measured either as total HSL protein by Western blot analysis or as total amount of activatable HSL enzyme, is a major determinant of the maximum lipolytic capacity of human fat cells. In addition, HSL protein expression is at least, in part, determined by HSL mRNA expression.  相似文献   

9.
10.
11.
Insulin receptor (IR) gene expression at the mRNA level was investigated in hindlimb skeletal muscle, epididymal adipose tissue and in the liver of rats exposed to prolonged in vivo administration of deoxycorticosterone acetate (DOCA). Following treatment, plasma insulin levels were reduced while glucose levels increased compared to values in control rats. DOCA-treated animals showed an increase in blood pressure and a reduction in body weight. This treatment also induced hypokalemia and decreased plasma protein levels. Sodium levels were unaffected. Moreover, no differences in DNA and protein content or in the indicator of cell size (protein/DNA) were observed in the skeletal muscle or adipose tissue of animals. In contrast, there was a clear increase in the protein and DNA contents of the liver with no change in the indicator of cell size. Northern blot assays revealed 2 major IR mRNA species of approximately 9.5 and 7.5 Kb in the 3 tissues from control animals. DOCA treatment induced no change in the levels of either RNA species in skeletal muscle. However, a decrease of approximately 22% was detected in the levels of both species in adipose tissue whereas the liver showed an increase of 64%. These results provide the first evidence for an in vivo tissue-specific modulation of IR mRNA levels under experimental conditions of mineralocorticoid excess.  相似文献   

12.
In this study, the overfed rat was employed as a model for examining the influence of obesity on the regulation of hepatic cytochromes P450 3A and 2C11 (CYP3A and CYP2C11, respectively). These proteins represent the predominant constitutive hepatic P450 enzymes of male rats. Sprague-Dawley rats were chronically fed a standard pelleted diet or an energy-dense diet which typically results in significant increases in body weight, serum triglyceride levels and liver lipid content. Obesity did not influence baseline levels of spectral cytochrome P450 content. Similar baseline activities of CYP3A (testosterone 6 beta-hydroxylation), comparative CYP3A protein levels (Western blot) and steady-state CYP3A mRNA (slot blot), were found in rats fed either diet. Likewise, obesity did not appear to influence CYP2C11 at the enzyme activity (testosterone 2 alpha-hydroxylation) or mRNA levels. Half of the animals in each group received 20 mg phenobarbital (intraperitoneal injection) per animal every 12 hours for three consecutive days. This resulted in similar phenobarbital plasma concentrations in both groups. Phenobarbital treatment increased the concentrations of total cytochrome P450 in both lean and obese rats to the same extent. CYP3A activity, protein and mRNA levels were induced to a similar magnitude in rats fed either diet. Furthermore, obesity did not influence CYP2C11 activity or mRNA levels following administration of phenobarbital. A lack of an effect of obesity and the altered lipid environment on the regulation of CYP3A and CYP2C11 is in contrast to other enzymes studied previously. It is apparent that the consequences of obesity on hepatic cytochrome P450 may be enzyme-specific.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号