共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of Low-Pressure Cold-Sprayed Aluminum Coatings 总被引:2,自引:0,他引:2
K. Ogawa K. Ito K. Ichimura Y. Ichikawa S. Ohno N. Onda 《Journal of Thermal Spray Technology》2008,17(5-6):728-735
Aluminum alloys are widely used as materials for engineering components of automobiles and airplanes because of their light weight and high corrosion resistance. However, cracks may develop sometimes in aluminum components, which have to be repaired by welding. It is difficult to weld aluminum components due to its high specific thermal conductivity and high coefficient of thermal expansion. The low-pressure cold-spray technique can be used instead of welding for repairing cracks. However, the effects of surface conditions on particle deposition and the mechanical properties of cold-sprayed coatings have not been investigated thus far. In this study, the effect of surface conditions focusing on active newly formed surface on aluminum particle deposition is studied and the mechanical properties of low-pressure cold-sprayed aluminum coatings are investigated by four-point bending tests. It is found that for efficient particle deposition it was necessary to obtain active newly formed surface of the substrate and particle surfaces by several impingements because the existence of inactive native oxide films has an adverse effect on the deposition. Furthermore, the strength of a cold-sprayed specimen is found to be higher than that of a cold-rolled specimen under compressive loading. 相似文献
2.
L. W. Zhang X. J. Ning L. Lu Q. S. Wang L. Wang 《Journal of Thermal Spray Technology》2016,25(3):587-594
CoNiCrAlY coatings were deposited by low-pressure cold spraying and pre-oxidized in a vacuum environment, and its hot corrosion behavior in pure Na2SO4 and 75 wt.% Na2SO4 + 25 wt.% NaCl salts was investigated. The pre-oxidation treatment resulted in the formation of a dense and continuous α-Al2O3 scale on the coating surface. After being corroded for 150 h at 900 °C, the pre-oxidized coating exhibited better corrosion resistance to both salts than the as-sprayed coating. The presence of preformed Al2O3 scale reduced the consumption rate of aluminum, by delaying the formation of internal oxides and sulfides and promoting the formation of a denser and more adherent Al2O3 scale. Moreover, we investigated the corrosion mechanism of cold-sprayed CoNiCrAlY coatings in the two salts and discussed the effect of the pre-oxidation treatment. 相似文献
3.
Lin-wei Zhang Lei Lu Lu Wang Xian-jin Ning Quan-sheng Wang Ri-xin Wang 《Journal of Thermal Spray Technology》2017,26(7):1565-1572
CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed. 相似文献
4.
Corrosion Properties of Cold-Sprayed Tantalum Coatings 总被引:2,自引:0,他引:2
Cold spraying enables the production of pure and dense metallic coatings. Denseness (impermeability) plays an important role
in the corrosion resistance of coatings, and good corrosion resistance is based on the formation of a protective oxide layer
in case of passivating metals and metal alloys. The aim of this study was to investigate the microstructural details, denseness,
and corrosion resistance of two cold-sprayed tantalum coatings with a scanning electron microscope and corrosion tests. Polarization
measurements were taken to gain information on the corrosion properties of the coatings in 3.5 wt.% NaCl and 40 wt.% H2SO4 solutions at room temperature and temperature of 80 °C. Standard and improved tantalum powders were tested with different
spraying conditions. The cold-sprayed tantalum coating prepared from improved tantalum powder with advanced cold spray system
showed excellent corrosion resistance: in microstructural analysis, it showed a uniformly dense microstructure, and, in addition,
performed well in all corrosion tests. 相似文献
5.
S. Kumar V. Vidyasagar A. Jyothirmayi S. V. Joshi 《Journal of Thermal Spray Technology》2016,25(4):745-756
The cold-spray technique is of significant interest to deposit refractory metals with relatively high melting point for a variety of demanding applications. In the present study, mechanical properties of cold-sprayed tantalum coatings heat treated at different temperatures were investigated using microtensile testing, scratch testing, and nanoindentation. The corrosion performance of heat-treated coatings was also evaluated in 1 M KOH solution, and potentiodynamic polarization as well as impedance spectroscopy studies were carried out. Assessment of structure–property correlations was attempted based on microstructure, porosity, and intersplat bonding state, together with mechanical and corrosion properties of the heat-treated cold-sprayed tantalum coatings. Coatings annealed at 1500 °C, which is very close to the recrystallization temperature of tantalum, were found to perform almost as bulk tantalum, with exciting implications for various applications. 相似文献
6.
Cold gas dynamic spraying of commercially pure aluminum is widely used for dimensional repair in the aerospace sector as it is capable of producing oxide-free deposits of hundreds of micrometer thickness with strong bonding to the substrate, based on adhesive pull-off tests, and often with enhanced hardness compared to the powder prior to spraying. There is significant interest in extending this application to structural, load-bearing repairs. Particularly, in the case of high-strength aluminum alloys, cold spray deposits can exhibit high levels of porosity and microcracks, leading to mechanical properties that are inadequate for most load-bearing applications. Here, heat treatment was investigated as a potential means of improving the properties of cold-sprayed coatings from Al alloy C355. Coatings produced with process conditions of 500 °C and 60 bar were heat-treated at 175, 200, 225, 250 °C for 4 h in air, and the evolution of the microstructure and microhardness was analyzed. Heat treatment at 225 and 250 °C revealed a decreased porosity (~ 0.14% and 0.02%, respectively) with the former yielding slightly reduced hardness (105 versus 130 HV0.05 as-sprayed). Compressive residual stress levels were approximately halved at all depths into the coating after heat treatment, and tensile testing showed an improvement in ductility. 相似文献
7.
S. Kikuchi S. Yoshino M. Yamada M. Fukumoto K. Okamoto 《Journal of Thermal Spray Technology》2013,22(6):926-931
Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix. 相似文献
8.
Adrian Wei-Yee Tan Wen Sun Yun Peng Phang Minghui Dai Iulian Marinescu Zhili Dong Erjia Liu 《Journal of Thermal Spray Technology》2017,26(7):1484-1497
Cold spray has the potential to restore damaged aerospace components made from titanium alloy, Ti6Al4V at low temperature (200-400 °C). Traverse scanning speed during deposition is one of the key factors that affect the quality of the Ti6Al4V coatings as it influences the thermal build-up and coating thickness per pass. As there are fewer reported studies on this, this work investigated the effects of different traverse scanning speeds (100, 300 and 500 mm/s) of cold spray nozzle on the microstructure and mechanical properties of cold-sprayed Ti6Al4V coatings. The cross-sectional analysis showed coating porosities reduces with slower traverse speed, from 3.2 to 0.5%. In addition, the microhardness of the coatings increased from about 361-385 HV due to strain hardening. However, the adhesion strength of the coatings to the substrates significantly decreased with reduced traverse speed from about 60 MPa (glue failure) at 500 mm/s to 2.5 MPa (interface failure) at 100 mm/s. Therefore, this study revealed that the control of heat build-up and thickness per pass during the cold spray deposition of the Ti6Al4V coatings is crucial to attain the desirable properties of the coatings. 相似文献
9.
A cold spray process was used to deposit titanium (Ti) coatings of different thicknesses on commercial Ti-6Al-4V (Ti64) substrates. The hardness of the Ti coatings was measured using a Vickers micro-indenter. It was found that the thicker Ti coatings had higher hardness probably due to the better uniformity and higher density of the coatings. The tribological results showed that the friction and wear of the Ti coatings tested against a steel ball under dry condition became lower with higher thickness probably due to the higher wear resistance of the thicker coatings associated with their higher hardness. The specific wear rates of all the Ti coatings were significantly lower than that of the Ti64 substrate as a result of the higher wear resistance of the Ti coatings associated with their cold-worked microstructures and the formation of high wear resistant oxide layers on their wear tracks during the wear testing. 相似文献
10.
KeeHyun Kim Seiji Kuroda Makoto Watanabe RenZhong Huang Hirotaka Fukanuma Hiroshi Katanoda 《Journal of Thermal Spray Technology》2012,21(3-4):550-560
Thick titanium coatings were prepared by the warm spraying (WS) and cold spraying (CS) processes to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particles were numerically calculated. Significant oxidation occurred in the WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of a high velocity oxy-fuel (HVOF) spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In the CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Even when scanning electron microscopy or an x-ray diffraction method did not detect oxides in the coating layers produced by WS using a high nitrogen flow rate or by CS using helium, the inert gas fusion method revealed minor increases of oxygen content from 0.01 to 0.2?wt.%. Most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense. However, the cross-sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles. 相似文献
11.
12.
采用磁控溅射技术,在单晶Si片和M2工具钢表面沉积CrAlMoN梯度薄膜,利用SEM、EDS、XRD、划痕仪、纳米压痕仪研究了CrAlMoN梯度薄膜的微观结构、膜/基结合力、硬度和弹性模量。结果表明,CrAlMoN梯度薄膜呈面心立方结构,薄膜的表面和截面结构紧凑致密。梯度结构的CrAlMoN薄膜具有高的膜/基结合强度,薄膜硬度和弹性模量分别达到24.13GPa和342.33GPa,力学性能明显优于CrAlN薄膜 相似文献
13.
14.
Heli Koivuluoto Andrea Milanti Giovanni Bolelli Luca Lusvarghi Petri Vuoristo 《Journal of Thermal Spray Technology》2014,23(1-2):98-103
Cold spraying is a promising technique for the production of dense metallic coatings. In cold spraying, coating formation is through high velocity impacts of solid particles with high kinetic energy. During impact, particles deform plastically and adhere to the substrate, gradually building-up the coating. This makes it possible to form pure and dense coating structures. These impermeable coatings are advantageous in many applications such as those where corrosion protection is required. Nickel and nickel-copper alloys have good corrosion resistance and therefore, as dense coatings, have high potential for employment as corrosion barrier layers. In this study, the structural and corrosion properties of high-pressure cold-sprayed (HPCS) Ni and NiCu coatings are characterized. NiCu alloys are known to have good corrosion resistance in sulphuric and hydrochloric acids, whereas Ni is resistant to caustic soda and alkaline salt solutions. This study also shows the effect of heat treatments on coating properties. FESEM studies of cross-sectional samples reveal structural details of the HPCS coatings while corrosion properties are evaluated with polarization measurements. The corrosion behavior of both the bulk and substrate material is determined in order to assess the real corrosion protection potential of the coatings. 相似文献
15.
ADI的显微组织由奥氏体加上针状铁素体的混合组织组成。其每一束针状铁素体由许多位相相同,厚度大约200 nm的薄铁素体片组成。其奥氏体有两种形态:一种是存在于针状铁素体之间的近似于等轴形的块状奥氏体;一种是存在于针状铁素体内的薄条形奥氏体。从晶粒尺寸数量级来说,针状铁素体的厚度约为200 nm,而铁素体内奥氏体的厚度仅为几到10 nm数量级。金属强化的几种主要方式,细晶强化、位错强化、晶界与亚结构强化、第二相强化、固溶强化等都在ADI得到了体现。正是由于ADI这种特有的微观组织使其具有了优越的力学性能。 相似文献
16.
等温淬火球铁的显微组织由奥氏体加针状铁素体的混合组织组成。其每一束针状铁素体由许多位相相同,厚度大约200纳米的薄铁素体片组成。其奥氏体有两种形态:一种是存在于针状铁素体之间的近似于等轴形的块状奥氏体:一种是存在于针状铁素体之内的薄片形奥氏体。从晶粒尺寸数量级来说,针状铁素体的厚度约为200纳米,而铁素体内奥氏体的厚度仅为几到10纳米数量级。金属强化的几种主要方式:细晶强化,位错强化,晶界与亚结构强化,第二相强化,固溶强化,细晶强化以及TRIP强化等都在等温淬火球铁中得到了体现。正是由于等温淬火球铁这种特有的微观组织使其具有了优黻的力学性能。 相似文献
17.
In this study, FeBSiNb coatings were prepared by twin wire arc spraying process. The microstructure and mechanical properties of as-sprayed coatings were characterized. The results show that the coating is adhering well and very compact with porosity of 1.2% (the value range is 0.9-1.7%). The microstructure of the coating consists of full glassy structure. The crystallization temperature, microhardness, elastic modulus, and average adhesive strength of the coating are 819 K, 16.42 GPa (the value range is 14.38-18.46 GPa), 219 GPa (the value range is 201-237 GPa), and 57.4 MPa (the value range is 55-64 MPa), respectively. The relatively wear resistance of the coating is about three times than that of 3Cr13 martensite stainless steel coating. The reasons for excellent wear resistance of FeBSiNb metallic glass coating are attributed to a uniform amorphous structure, the high ratio of hardness to elastic modulus (H/E) and the ratio of the elastic deformation energy to the total deformation energy (η value). The main failure mechanism of the coating is brittle failure and fracture. 相似文献
18.
Dai-hong Xiao 《Journal of Materials Engineering and Performance》2009,18(9):1226-1229
The microstructure and properties of homogeneous and gradient Ti(C, N) coatings synthesized using magnetron sputtering technique were investigated using x-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ion mass spectroanalyzer (SIMS), nanoindentation, and cutting tests. The results have shown that the coatings between homogenous and gradient Ti(C, N) are face centered cubic structure and show the columnar crystallites. The homogeneous Ti(C, N) exhibits higher nanohardness compared to the gradient Ti(C, N) coating. Moreover, the homogeneous Ti(C, N) coated inserts behave better wear resistance in continuous turning but worse properties in interrupted cutting. 相似文献
19.
Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate’s surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating’s fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy. 相似文献