首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of shear on whey protein isolate (WPI) gels, pure or mixed with xanthan, have been investigated at pH 5.4 by dynamic oscillatory measurements and light microscopy (LM). The shear was performed on the suspensions under a constant stress of between 0.04 and 2.1 Pa. Various temperature conditions were chosen in order to describe the effects of shear at the different states of aggregation of the WPI. Shear-sensitive aggregation phenomena were already found around 40°C for the pure WPI samples. Continuous shearing during heating from 20 to 40°C, prior to heat treatment at 90°C, resulted in a gel with a storage modulus (G′) half that of the unsheared gel, independent of the shear stress. Continuous shearing during heating from 20 to 76°C resulted in a further decrease in G′. Inhomogeneities arose in networks formed from continuously sheared suspensions during heating from 20 to 50°C and above. Depending on the shear stress and on the heating range of the shear, the networks showed areas of varied compactness and different classes of pores, ranging from 10 to 200 μm. A higher G′, compared to that for the unsheared gel, was found for gels subjected to shear for short periods in the vicinity of the gel point. The presence of xanthan inhibited the aggregation and demixing of the WPI, described as a sterical phenomenon. Under static conditions, the presence of xanthan resulted in a more homogeneous WPI network. Exposing the mixed suspensions to shear generally increased the inhomogeneity of the network structure. Short periods of shearing in the vicinity of the gel point affected the kinetics of the gel formation and resulted in gels with higher G′ values than the unsheared gel. Continuous shearing under stresses below 0.09 Pa, during heating from 20 to 60°C and above, also resulted in gels with an increased G′. Continuous shear under stresses above 0.9 Pa resulted in gels with a decreased G′  相似文献   

2.
Single-component gels were prepared by cold-setting aqueous preparations of thermally processed milk and soya proteins. Small deformation mechanical measurements on soya protein samples showed a strong elastic response (G′) even at the hydration temperature (50°C). Both proteins produced an initial monotonie increase in G′ on cooling, followed by a relatively constant modulus during a subsequent time sweep at the setting temperature (5°C). Networks were fully reversible on heating; the milk protein gels melting out completely at temperatures >60°C, whereas the soya protein gels maintained significant structure even at the highest accessible temperature (95°C). The lack of thermal hysteresis or of sharp, cooperative melting was also confirmed by differential scanning calorimetry. Further investigation of the macromolecular properties of the gels, comprising G′ dependence as a function of frequency of oscillation and creep experiments, suggests that gels remain stable within the time scale of the measurements (90 min). Finally, under increasing amplitude of oscillation, networks withstood structural breakdown up to strain levels of ~70%; behaviour anticipated for biopolymer gels. Mixed gels were studied using a fixed amount of milk protein (10% w/w) with soya protein concentrations from 6 (minimum gelling requirement) to 16% w/w (solubility limit). Comparison of melting profiles (G′ vs. T) for the phase separated systems with those obtained for the individual components indicated phase-inversion from a milk protein continuous network to a soya continuous system at a soya protein concentration of ~11%. Analysis of solvent partition between the constituent phases utilized classical theory of network deswelling for polymer combinations below the phase inversion point and phase equilibria treatment for the soya continuous network with milk protein inclusions. In the case of equilibrium separation of the two components, results were expressed in terms of a single adjustable parameter, p (the ratio of solvent to polymer in one phase divided by the corresponding ratio in the other phase), indicating a soya hydrophilicity of ~1.25 times that of milk protein.  相似文献   

3.
The objective of this work was to study the rheological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FFS presented Newtonian behavior at 30 °C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G′) and loss (G″) moduli as a function of frequency of FFS obtained at 5 °C were typical of physical gels; with the G′ higher than the G″. The strength of the gels was affected by the PVA concentration.  相似文献   

4.
Trametes hirsuta laccase (EC 1.10.32) alone was not able to cross-link proteins effectively unless high dosages were used. Incorporation of ferulic acid enhanced the formation of intermolecular cross-links. Cross-linking was more effective when the reaction was carried out at 45 °C rather than at room temperature. Size exclusion chromatography showed that ferulic acid monomers disappeared from the solution in the presence of laccase. Force at rupture point of the caseinate gels treated with laccase without ferulic acid was not significantly different from the control, while stronger gels were achieved when ferulic acid was present. Rheological measurements showed that laccase treatment together with ferulic acid resulted in higher G′ values than the control. Gels were analyzed with confocal laser scanning microscope. A finer network was observed when the enzyme was used together with ferulic acid. Slight proteolytic activity resulted in a negative effect on the gel firmness and microstructure when laccase was used without ferulic acid.  相似文献   

5.
Starch was extracted from corn of two genotypes (Clint and P3730) grown during the 1997 season in four regions in New Zealand and Australia. The granule size distributions in unheated and heated (80°C, 2–120 min) 2.6% starch dispersions (STDs) were different. Most of the heated STDs exhibited shear-thinning behavior, but dispersions of a Clint starch exhibited shear-thickening behavior at shear rates >300 s−1. The power law consistency coefficient of the STDs increased, but their flow behavior index decreased with heating time. Values of the consistency coefficient of all the STDs were found to be related to the cube of the mean granule diameter. Frequency versus storage modulus (G′) data of a 5% Clint STD heated at 80°C, 30 min, showed increase in G′ with ω in a convex down manner, while the other STDs showed typical increase in a convex up manner.  相似文献   

6.
The influence of mechanical shearing on the small deformation properties and microstructure of heat‐induced whey protein gel has been studied. The viscoelastic properties of these gels at different concentrations of 10% and 20% (w/w) exposed to different shear rates of 0, 50, 100, 200 and 500 s?1 during gelation were measured using dynamic oscillatory rheometry. The structure of both the shear treated and unsheared gels was then investigated using light microscopy. The results showed that the storage modulus of the gels at both concentrations was increased by increasing the shear rate exposure during gelation while the shear‐treated gels were more elastic and showed frequency‐independent behaviour. As the total protein concentration of the gel increased, the viscoelastic properties of the gels also increased significantly and the gels showed greater elasticity. The gels obtained from the higher shear rate exposure were stronger with higher elastic moduli at both protein concentrations. Images of the gels obtained using light microscopy showed that shearing resulted in phase separation and some aggregation in the structure of the gels at both concentrations. However, the shearing rates applied in this study were not enough to cause aggregation breakdown in the gel network.  相似文献   

7.
The effect of segregative interactions with gelatin (type B; pI=4.9; 0–10 wt%) on the networks formed by low-methoxy pectin on cooling in the presence of stoichiometric Ca2+ at pH 3.9 has been investigated by rheological measurements under low-amplitude oscillatory shear. Samples were prepared and loaded at 85 °C, cooled (1 °C/min) to 5 °C, held for 100 min, and re-heated (1 °C/min) to 85 °C, with measurement of storage and loss moduli (G′ and G″) at 10 rad s−1 and 2% strain. The final values of G′ at 5 °C for mixtures prepared at the same pH without Ca2+ were virtually identical to those observed for the same concentrations (0.5–10.0 wt%) of gelatin alone, consistent with the conclusion from the preceding paper that electrostatic (associative) interactions between the two polymers become significant only at pH values below 3.9. Increases in moduli on cooling in the presence of Ca2+ occurred in two discrete steps, the first coincident with gelation of calcium pectinate alone and the second with gelation of gelatin. Both processes were fully reversible on heating, but displaced to higher temperature (by 10 °C), as was also observed for the individual components. The magnitude of the changes occurring over the temperature range of the gelatin sol–gel and gel–sol transitions demonstrates that the gelatin component forms a continuous network; survival of gel structure after completion of gelatin melting shows that the calcium pectinate network is also continuous (i.e. that the co-gel is bicontinuous). On progressive incorporation of NaCl (to induce phase separation before, or during, pectin gelation) the second melting process, coincident with loss of calcium pectinate gel structure, was progressively abolished, indicating conversion to a gelatin-continuous network with dispersed particles of calcium pectinate. These qualitative conclusions are supported by quantitative analyses reported in the following paper.  相似文献   

8.
The gelation mechanism and the change of the network structure during cooling of the mixed solution of high-acyl (HA) and low-acyl (LA) gellan (containing 0.5% HA gellan and 0.5% LA gellan; hereafter called “mixed solution”) were elucidated on the basis of the results of dynamic viscoelasticity, circular dichroism (CD), and NMR measurements, which provide information about the network formation, the structural change due to random coil-double helix (C–H) transition, and the chain mobility of gellan, respectively. It was demonstrated that HA gellan chains in the mixed solution underwent C–H transition individually to form a network structure at the transition temperature for 1% HA gellan solution (75 °C), where storage modulus G′ and loss modulus G″ were steeply increased and the chain mobility of the HA gellan was restricted. The structural change of the HA gellan chains proceeded gradually with further cooling. At 25 °C, which is the C–H transition temperature for 1% LA gellan solution, LA gellan chains in the mixed solution formed a double helix, where G′ and G″ were slightly increased and the chain mobility of LA gellan was restricted. The results suggest that the double helix formation involves only the same kind of gellan chains even in the mixed solution, and that LA gellan chains decrease the mobility and promote the double helix formation of HA gellan chains, and vice versa.  相似文献   

9.
On solid-like rheological behaviors of globular protein solutions   总被引:1,自引:0,他引:1  
Dynamic viscoelastic and steady flow properties of β-lactoglobulin, bovine serum albumin, ovalbumin, and α-lactalbumin aqueous solutions were investigated at 20°C. When a sinusoidal strain in the linear viscoelastic region was applied, the solutions of the globular proteins except for α-lactalbumin showed typical solid-like rheological behavior: the storage modulus G′ was always larger than the loss modulus G″ in the entire frequency range examined (0.1–100 rad/s). Under a steady shear flow, strong shear thinning behavior was observed with increasing shear rate from 0.001 to 800 s−1, for the globular proteins except for α-lactalbumin. The values of the steady shear viscosity η were lower than those of the dynamic shear viscosity η* at a comparable time scale of observation, violating the Cox–Merz rule, and thus suggesting that a solid-like structure in a globular protein solution was susceptible to a steady shear strain. During isothermal gelation of the protein colloids at 70°C, no crossover between G′ and G″ was observed so that the gelation point was judged by an abrupt increase in the modulus or a sudden decrease in tanδ.  相似文献   

10.
Small-deformation oscillatory measurements have been used to study the effect of low-viscosity oxidised starch on the rheology of calcium pectinate gels formed by controlled cooling from the sol state at high temperature. Large reductions in modulus (G′; 0.5% strain; 10°C) were observed at starch concentrations below the minimum critical concentration for gelation of oxidised starch alone under the same conditions (32 wt%). This behaviour is tentatively ascribed to thermodynamic incompatibility between the two polymers causing incipient precipitation of calcium pectinate within the gel network.  相似文献   

11.
Skim milk was ultrasonicated for times up to 30 min either with or without temperature control. Ultrasonication (US) without temperature control resulted in the generation of considerable heat, with the milk reaching  95 °C within 15 min of treatment. The whey proteins were denatured. Changes to the casein micelle size were observed, with decreases during the early stages of US and increases (because of aggregation) on prolonged treatment. Significant κ-casein dissociated from the micelles. Acid gels prepared from these ultrasonicated samples increased in firmness (final G′) up to a maximum final G′ after  15 min of US, followed by a decrease from this maximum on prolonged treatment. US with temperature control demonstrated that the denaturation of the whey proteins was entirely due to the heat generated during US, although the casein micelle size was still reduced. Acid gels prepared from ultrasonicated skim milk in which the temperature remained below the denaturation temperature of the whey proteins had low final G′, although a small increase was observed with increasing US time. Acid gels prepared from the samples that were ultrasonicated at temperatures above the denaturation temperature of the whey proteins had higher final G′, which could reach values similar to those obtained by the conventional heating of milk. The results of this study indicate that, in skim milk, most of the effect of US can be related to the heat generated from the treatment, with US itself having only a small effect on the milk when the temperatures are controlled.

Industrial relevance

The control and the manipulation of the firmness of acid skim milk gels are important in many dairy food applications such as yoghurts and some types of cheese. US is an emerging technology that could be used to process skim milk for use in acid gelled products. This study has demonstrated that acid gel firmness can be substantially manipulated when skim milk is ultrasonically treated before acidification; however, most of the effect is due to the heat generated during US treatment. As the effects of US are similar to those obtained through conventional heating processes, and as US can control spoilage microorganisms, using US under controlled temperature conditions could be an alternative to conventional heating to give desired functional properties and storage stability to milk products. However, the temperature/denaturation/aggregation would need to be carefully controlled to minimize the detrimental effects of excessive heating.  相似文献   

12.
The effects of cooling rate, holding temperature, pH and polysaccharide concentration on gelation characteristics of gelatin and gelatin–polysaccharide mixtures were investigated using a mechanical rheometer which monitored the evolution of G′ and G″. At low holding temperatures of 0 and 4 °C, elastic gelatin gels were formed whereas a higher holding temperature of 10 °C produced less elastic gels. At slow cooling rates of 1 and 2 °C/min, gelling was observed during the cooling phase in which the temperature was decreased from room temperature to the holding temperature. On the other hand, at higher cooling rates of 4 and 8 °C/min, no gelation was observed during the cooling phase. Good gelling behavior similar to that of commercial Strawberry Jell-O® Gelatin Dessert was observed for mixtures of 1.5 and 15 g sucrose in 100 ml 0.01 M citrate buffer containing 0.0029–0.0066 g low-acyl gellan. Also, these mixed gels were stronger than Strawberry Jell-O® Gelatin Desserts as evidenced by higher G′ and gel strength values. At a very low gellan content of 0.0029 g, increasing pH from 4.2 to 4.4 led to a decrease in the temperature at the onset of gelation, G′ at the end of cooling, holding and melting as well as an increase in gel strength. The gelation time was found to decrease to about 40 min for gelatin/sucrose dispersions in the presence of 0.0029 g gellan at pH 4.2 whereas the corresponding time at pH 4.4 was higher (79 min). In general, the gelation time of gelatin/sucrose dispersions decreased by a factor of 2 to 3 in the presence of low-acyl gellan. The addition of low-acyl gellan resulted in an increase in the gelation rate constant from 157.4 to 291 Pa. There was an optimum low-acyl gellan content for minimum gelation time, this optimum being pH dependent. Addition of guar gum also led to a decrease in gelation time to 73 min with a corresponding increase in the gelation rate constant to 211 Pa/min though these values were not sensitive to guar gum content in the range of 0.008–0.05 g. The melting temperature of gelatin/sucrose/gellan as well as gelatin/sucrose/guar mixtures did not differ significantly from that of pure gelatin or Strawberry Jell-O® Gelatin Desserts. At pH 4.2, the melting rate constant was highest at a low-acyl gellan content of 0.0029 g whereas the rate constant was insensitive to low-acyl gellan content at pH 4.4. Addition of guar did not seem to affect the melting temperature or the melting rate constant.  相似文献   

13.
Protein gel matrices are responsible for the texture of many foods. Therefore an understanding of the chemical reactions and physical processes associated with fracture properties of gels provides a fundamental understanding of select mechanical properties associated with texture. Globular proteins form thermally induced gels that are classified as fine-stranded, mixed or particulate, based on the protein network appearance. The fundamental properties of true shear stress and true shear strain at fracture, used to describe the physical properties of gels, depend on the gel network. Type and amount of mineral salt in whey protein and β-lactoglobulin protein dispersions determines the type of thermally induced gel matrix that forms, and thus its fracture properties. A fine-stranded matrix is formed when protein suspensions contain monovalent cation (Li+, K+, Rb+, Cs+) chlorides, sodium sulfate or sodium phosphate at ionic strengths ≤0.1 mol/dm3. This matrix has a well-defined network structure, and varies in stress and strain at fracture at different salt concentrations. At ionic strengths >0.1 mol/dm3 the matrix becomes mixed. This network appears as a combination of fine strands and spherical aggregates, and has high stress values and minimum strain values at fracture. Higher concentrations of monovalent cation salts cause the formation of particulate gels, which are high in stress and strain at fracture. The salt concentration required to change microstructure depends on the salt's position in the Hofmeister series. The formation of a particulate matrix also occurs when protein suspensions contain low concentrations (10–20 mol/dm3) of divalent cation (Ca2+, Mg2+, Ba2+) chloride salts or di-cationic 1,6-hexanediamine at pH 7.0. The divalent cation effect on β-lactoglobulin gelation is associated with minor changes in tertiary structure involving amide—amide interproton connectivities (determined by 1H NMR) at 40–45°C, increasing hydrophobicity and intermolecular aggregation. The type of matrix formed appears to be related to the dispersed or aggregated state of proteins prior to denaturation. Mixed and particulate matrices result from conditions which favor aggregation at temperatures (25–45°C) which are much lower than the denaturation temperature (~65°C). Therefore, general (e.g. Hofmeister series) and protein-specific factors can affect the dispersibility of proteins and thereby determine the microstructure and fracture properties of globular protein gels.  相似文献   

14.
This paper reports the cold gelation of preheated emulsions stabilized by whey protein, in contrast to, in previous reports, the cold gelation of emulsions formed with preheated whey protein polymers. Emulsions formed with different concentrations of whey protein isolate (WPI) and milk fat were heated at 90 °C for 30 min at low ionic strength and neutral pH. The stable preheated emulsions formed gels through acidification or the addition of CaCl2 at room temperature. The storage modulus (G′) of the acid-induced gels increased with increasing preheat temperature, decreasing size of the emulsion droplets and increasing fat content. The adsorbed protein denatures and aggregates at the surface of the emulsion droplets during heat treatment, providing the initial step for subsequent formation of the cold-set emulsion gels, suggesting that these preheated emulsion droplets coated by whey protein constitute the structural units responsible for the three-dimensional gel network.  相似文献   

15.
M. Rinaudo  A. Moroni   《Food Hydrocolloids》2009,23(7):1720-1728
The rheological behavior of mixtures of xanthan with different galactomannans is examined to evaluate the influence of the structure of galactomannan and that of the mixture composition on the physical properties; the larger synergy is observed for locust bean gum in the presence of xanthan. It is also shown that pH has only a slight influence on the rheology down to pH = 3.59; at lower pH, the G′ modulus decreases significantly.Then, the behavior of xanthan–methylcellulose mixtures is studied, paying particular attention to the storage modulus (G′) of the system, often equated to “gel strength”. The modulus values for direct dissolution of the two polysaccharides in 0.1 M NaCl show that xanthan and methylcellulose are incompatible. The rheological behavior observed is in agreement with DSC results which indicate that no specific interaction between the two polymers exists. However, upon increasing temperature, the modulus of methylcellulose increases substantially between 65 and 70 °C because of physical gelation and dominates the rheology of the mixtures. When temperature is decreased to 37 °C, the clear methylcellulose gel formed remains stable, still giving the main contribution to the overall rheology of the system. Finally, ternary systems are studied when xanthan is mixed with galactomannan and methylcellulose. In this case H-bonds involved in galactomannan–xanthan interaction break when temperature increases causing a decrease in rheological moduli which is then compensated by the gelation of methylcellulose giving an original large increase in moduli for the ternary systems. This can be interpreted as the presence of two independent but interpenetrating networks. The role of pH for these ternary systems is interesting: it is still dominated by methylcellulose and nearly independent of acidic pH (down to pH = 1.8).  相似文献   

16.
Texture and structure of high-pressure-frozen gellan gum gel   总被引:2,自引:0,他引:2  
To determine the effects of sucrose and high-pressure-freezing, unsubstituted form-gellan gum gels with 0, 5, 10 or 20% sucrose were frozen at 0.1–686 MPa and −20 °C. Gels were frozen during pressurization at 0.1, 100, 600–686 MPa. However, at 200–500 MPa, gels did not freeze but froze during pressure release (pressure-shift-freezing). On pressure release, a sharp rise in sample temperature was observed for the samples between 200 and 500 MPa. This was a consequence of the exothermic freezing event. Thus, appearance and structure of gels frozen at 200–500 MPa were better than other treated samples due to quick freezing. However, when gels were frozen at 0.1–686 MPa, rupture stress decreased remarkably and strain increased. Texture of pressure-shift-frozen gel was somewhat better than that of gels frozen in freezers (−20, −30 or −80 °C) at atmospheric pressure. Consequently pressure-shift-freezing was more effective. It was found that the addition of sucrose to gels was effective in improving the quality of frozen gellan gum gels.  相似文献   

17.
The stability of organogels differs based on the organogelator concentration, storage temperature, and solvent type. Organogel post-crystallization annealing was monitored at 5 °C, 15 °C, 20 °C or 30 °C for up to 1 month. Gels, stored at 5 °C, had highly immobilized oil, as judged from large T2 relaxation peaks at 50–70 ms determined by pulsed nuclear magnetic resonance (pNMR) and visual observations. When the gels were stored at 30 °C, the 50–70 ms T2 relaxation peak shifted to longer relaxation times, indicating that the oil was more mobile than at 5 °C. Along with the increase in syneresis at 30 °C, the 12HSA network’s crystallinity was also greater, having fewer inclusions of liquid oil, as determined by pNMR. The highly branched network observed at 5 °C changed more in time with regards to crystallinity although it entrained the oil to a much greater extent than the gels stored at 30 °C.  相似文献   

18.
A powder blend comprising (by weight) 94% whey protein concentrate (WPC80), 6% pre-gelatinized corn starch, 0.6% CaCl2, and 0.6% NaCl was texturized using a supercritical fluid extrusion (SCFX) process. The blend was extruded at 90 °C in a pH range of 2.89 to 8.16 with 1% (db) supercritical carbon dioxide (SC-CO2) and 60% moisture content. The texturized WPC-based (TWPC) samples were dried, grounded into powder, reconstituted in water, and evaluated using a range of rheological studies. Most TWPC samples exhibited shear thinning behavior and their mechanical spectra were typical of weak gel characteristics. The TWPC produced under extremely acidic condition of pH 2.89 with SC-CO2 yielded the highest η* (10,049 Pa s) and G′ (9,885 Pa) compared to the unprocessed WPC (η* = 0.083 Pa s and G’ = 0.036 Pa). The SCFX process rendered WPC into a product with cold-setting gel characteristics that may be suitable for use as a food texturizer over a wide range of temperatures.  相似文献   

19.
We investigated the effect of altering temperature immediately after gels were formed at 37°C. We defined instrumentally measurable gelation (IMG) as the point at which gels had a storage modulus (G′) ≥5 Pa. Gels were made at constant incubation temperature (IT) of 37°C up to IMG, and then cooled to 30 or 33.5, or heated to 40.5 or 44°C, at a rate of 1°C/min and maintained at those temperatures until pH 4.6. Control gel was made at 37°C (i.e., no temperature change during gelation/gel development). Gel formation was monitored using small strain dynamic oscillatory rheology, and the resulting structure and physical properties at pH 4.6 were studied by fluorescence microscopy, large deformation rheology, whey separation (WS), and permeability (B). A single strain of Streptococcus thermophilus was used to avoid variations in the ratios of strains that could have resulted from changes in temperature during fermentation. Total time required to reach pH 4.6 was similar for samples made at constant IT of 37°C or by cooling after IMG from 37 to either 30 or 33.5°C, but gels heated to 40 or 44°C needed less time to reach pH 4.6. Cooling gels after IMG resulted in an increase in G′ values at pH 4.6, a decrease in LTmax, WS, and B, and an increase in the area of protein aggregates of micrographs compared with the control gel made at constant IT of 37°C. Heating gels after IMG resulted in a decrease in G′ values at pH 4.6 and an increase in LTmax values and WS. The physical properties of acid milk gels were dominated by the temperature profile during the gel-strengthening phase that occurs after IMG. This study indicates that the final properties of yogurt greatly depend on the environmental conditions (e.g., temperature, time/rate of pH change) experienced by the casein particles/clusters during the critical early gel development phase when bonding between and within particles is still labile. Cooling of gels may encourage inter-cluster strand formation, whereas heating of gels may promote intra-cluster fusion and the breakage of strands between clusters.  相似文献   

20.
Protein denaturation has a major impact on meat quality parameters such as water holding capacity, tenderness and color. Specific information about structural changes of the individual muscle proteins post-mortem could help understand the factors affecting meat quality. An aromatic dye, 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (bisANS) that binds to the hydrophobic patches of proteins was used to monitor changes in the conformation of individual sarcoplasmic proteins caused by pH. The bisANS reagent was covalently linked to the proteins with UV-light and the proteins were separated and identified using gel electrophoresis and mass spectrometry. The results showed that the sarcoplasmic proteins creatine kinase M, aldolase A and lactate dehydrogenase showed increased hydrophobicity whereas carbonic anhydrase III showed decreased hydrophobicity with increasing pH. Temperature only had a marked effect on the results at around 40 °C, there being no change between 25 and 35 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号