首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For any graph class \(\mathcal{H}\) , the \(\mathcal{H}\) -Contraction problem takes as input a graph \(G\) and an integer \(k\) , and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\) -Contraction for three different classes \(\mathcal{H}\) : the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most  \(d\) , the class \(\mathcal{H}_{=d}\) of \(d\) -regular graphs, and the class of \(d\) -degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\) , \(d\) , and \(d+k\) . Moreover, we show that \(\mathcal{H}\) -Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\) , while the problem is \(\mathsf{W}[2]\) -hard when \(\mathcal{H}\) is the class of \(2\) -degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\) -Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.  相似文献   

2.
Let $ Q$ be a complete residuated lattice. Let $\text {SetR}(Q)$ be the category of sets with similarity relations with values in $ Q$ (called $ Q$ -sets), which is an analogy of the category of classical sets with relations as morphisms. A cut in an $ Q$ -set $(A,\delta )$ is a system $(C_{\alpha })_{\alpha \in Q}$ , where $C_{\alpha }$ are subsets of $A\times Q$ . It is well known that in the category $\text {SetR}(Q)$ , there is a close relation between special cuts (called f-cuts) in an $ Q$ -set on one hand and fuzzy sets in the same $ Q$ -set, on the other hand. Moreover, there exists a completion procedure according to which any cut $(C_{\alpha })_{\alpha }$ can be extended onto an f-cut $(\overline{C_{\alpha }})_{\alpha }$ . In the paper, we prove that the completion procedure is, in some sense, the best possible. This will be expressed by the theorem which states that the category of f-cuts is a full reflective subcategory in the category of cuts.  相似文献   

3.
We show that the category \(L\) - \(\mathbf{Top}_{0}\) of \(T_{0}\) - \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}\) of \(L\) -topological spaces and the category \(L\) - \(\mathbf{Sob}\) of sober \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}_{0}\) .  相似文献   

4.
5.
We consider discrete-time projective semilinear control systems \(\xi _{t+1} = A(u_t) \cdot \xi _t\) , where the states \(\xi _t\) are in projective space \(\mathbb {R}\hbox {P}^{d-1}\) , inputs \(u_t\) are in a manifold \(\mathcal {U}\) of arbitrary finite dimension, and \(A :\mathcal {U}\rightarrow \hbox {GL}(d,\mathbb {R})\) is a differentiable mapping. An input sequence \((u_0,\ldots ,u_{N-1})\) is called universally regular if for any initial state \(\xi _0 \in \mathbb {R}\hbox {P}^{d-1}\) , the derivative of the time- \(N\) state with respect to the inputs is onto. In this paper, we deal with the universal regularity of constant input sequences \((u_0, \ldots , u_0)\) . Our main result states that generically in the space of such systems, for sufficiently large \(N\) , all constant inputs of length \(N\) are universally regular, with the exception of a discrete set. More precisely, the conclusion holds for a \(C^2\) -open and \(C^\infty \) -dense set of maps \(A\) , and \(N\) only depends on \(d\) and on the dimension of \(\mathcal {U}\) . We also show that the inputs on that discrete set are nearly universally regular; indeed, there is a unique non-regular initial state, and its corank is 1. In order to establish the result, we study the spaces of bilinear control systems. We show that the codimension of the set of systems for which the zero input is not universally regular coincides with the dimension of the control space. The proof is based on careful matrix analysis and some elementary algebraic geometry. Then the main result follows by applying standard transversality theorems.  相似文献   

6.
Let \(G = (V,E)\) be a connected graph. The conditional edge connectivity \(\lambda _\delta ^k(G)\) is the cardinality of the minimum edge cuts, if any, whose deletion disconnects \(G\) and each component of \(G - F\) has \(\delta \ge k\) . We assume that \(F \subseteq E\) is an edge set, \(F\) is called edge extra-cut, if \(G - F\) is not connected and each component of \(G - F\) has more than \(k\) vertices. The edge extraconnectivity \(\lambda _\mathrm{e}^k(G)\) is the cardinality of the minimum edge extra-cuts. In this paper, we study the conditional edge connectivity and edge extraconnectivity of hypercubes and folded hypercubes.  相似文献   

7.
We introduce the informational correlation \(E^{AB}\) between two interacting quantum subsystems \(A\) and \(B\) of a quantum system as the number of arbitrary parameters \(\varphi _i\) of a unitary transformation \(U^A\) (locally performed on the subsystem \(A\) ) which may be detected in the subsystem \(B\) by the local measurements. This quantity indicates whether the state of the subsystem \(B\) may be effected by means of the unitary transformation applied to the subsystem \(A\) . Emphasize that \(E^{AB}\ne E^{BA}\) in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem \(B\) . However, there is some non-reducible part of \(E^{AB}(t)\) which may not be decreased by any unitary transformation of the subsystem \(B\) at a fixed time instant \(t\) . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.  相似文献   

8.
9.
In this paper we study decentralized routing in small-world networks that combine a wide variation in node degrees with a notion of spatial embedding. Specifically, we consider a variant of J. Kleinberg’s grid-based small-world model in which (1) the number of long-range edges of each node is not fixed, but is drawn from a power-law probability distribution with exponent parameter \(\alpha \ge 0\) and constant mean, and (2) the long-range edges are considered to be bidirectional for the purposes of routing. This model is motivated by empirical observations indicating that several real networks have degrees that follow a power-law distribution. The measured power-law exponent \(\alpha \) for these networks is often in the range between 2 and 3. For the small-world model we consider, we show that when \(2 < \alpha < 3\) the standard greedy routing algorithm, in which a node forwards the message to its neighbor that is closest to the target in the grid, finishes in an expected number of \(O(\log ^{\alpha -1} n\cdot \log \log n)\) steps, for any source–target pair. This is asymptotically smaller than the \(O(\log ^2 n)\) steps needed in Kleinberg’s original model with the same average degree, and approaches \(O(\log n)\) as \(\alpha \) approaches 2. Further, we show that when \(0\le \alpha < 2\) or \(\alpha \ge 3\) the expected number of steps is \(O(\log ^2 n)\) , while for \(\alpha = 2\) it is \(O(\log ^{4/3} n)\) . We complement these results with lower bounds that match the upper bounds within at most a \(\log \log n\) factor.  相似文献   

10.
The quantum entropy-typical subspace theory is specified. It is shown that any \(\rho ^{\otimes n}\) with von Neumann \(\hbox {entropy}\le h\) can be preserved approximately by the entropy-typical subspace with \(\hbox {entropy}=h\) . This result implies an universal compression scheme for the case that the von Neumann entropy of the source does not exceed \(h\) .  相似文献   

11.
If the length of a primitive word \(p\) is equal to the length of another primitive word \(q\) , then \(p^{n}q^{m}\) is a primitive word for any \(n,m\ge 1\) and \((n,m)\ne (1,1)\) . This was obtained separately by Tetsuo Moriya in 2008 and Shyr and Yu in 1994. In this paper, we prove that if the length of \(p\) is divisible by the length of \(q\) and the length of \(p\) is less than or equal to \(m\) times the length of \(q\) , then \(p^{n}q^{m}\) is a primitive word for any \(n,m\ge 1\) and \((n,m)\ne (1,1)\) . Then we show that if \(uv,u\) are non-primitive words and the length of \(u\) is divisible by the length \(v\) or one of the length of \(u\) and \(uv\) is odd for any two nonempty words \(u\) and \(v\) , then \(u\) is a power of \(v\) .  相似文献   

12.
We consider a family of linear control systems \(\dot{x}=Ax+\alpha Bu\) on \(\mathbb {R}^d\) , where \(\alpha \) belongs to a given class of persistently exciting signals. We seek maximal \(\alpha \) -uniform stabilization and destabilization by means of linear feedbacks \(u=Kx\) . We extend previous results obtained for bidimensional single-input linear control systems to the general case as follows: if there exists at least one \(K\) such that the Lie algebra generated by \(A\) and \(BK\) is equal to the set of all \(d\times d\) matrices, then the maximal rate of convergence of \((A,B)\) is equal to the maximal rate of divergence of \((-A,-B)\) . We also provide more precise results in the general single-input case, where the above result is obtained under the simpler assumption of controllability of the pair \((A,B)\) .  相似文献   

13.
Replication is a standard technique for fault tolerance in distributed systems modeled as deterministic finite state machines (DFSMs or machines). To correct \(f\) crash or \(\lfloor f/2 \rfloor \) Byzantine faults among \(n\) different machines, replication requires \(nf\) backup machines. We present a solution called fusion that requires just \(f\) backup machines. First, we build a framework for fault tolerance in DFSMs based on the notion of Hamming distances. We introduce the concept of an ( \(f\) , \(m\) )-fusion, which is a set of \(m\) backup machines that can correct \(f\) crash faults or \(\lfloor f/2 \rfloor \) Byzantine faults among a given set of machines. Second, we present an algorithm to generate an ( \(f\) , \(f\) )-fusion for a given set of machines. We ensure that our backups are efficient in terms of the size of their state and event sets. Third, we use locality sensitive hashing for the detection and correction of faults that incurs almost the same overhead as that for replication. We detect Byzantine faults with time complexity \(O(n f)\) on average while we correct crash and Byzantine faults with time complexity \(O(n \rho f)\) with high probability, where \(\rho \) is the average state reduction achieved by fusion. Finally, our evaluation of fusion on the widely used MCNC’91 benchmarks for DFSMs shows that the average state space savings in fusion (over replication) is 38 % (range 0–99 %). To demonstrate the practical use of fusion, we describe its potential application to two areas: sensor networks and the MapReduce framework. In the case of sensor networks a fusion-based solution can lead to significantly fewer sensor-nodes than a replication-based solution. For the MapReduce framework, fusion can reduce the number of map-tasks compared to replication. Hence, fusion results in considerable savings in state space and other resources such as the power needed to run the backups.  相似文献   

14.
In this paper, we first uncover a fact that a partial adiabatic quantum search with \(O(\sqrt{N/M})\) time complexity is in fact optimal, in which \(N\) is the total number of elements in an unstructured database, and \(M\) ( \(M\ge 1\) ) of them are the marked ones(one) \((N\gg M)\) . We then discuss how to implement a partial adiabatic search algorithm on the quantum circuit model. From the implementing procedure on the circuit model, we can find out that the approximating steps needed are always in the same order of the time complexity of the adiabatic algorithm.  相似文献   

15.
The purpose of this paper is to exhibit a quantum network phenomenon—the anti-core—that goes against the classical network concept of congestion core. Classical networks idealized as infinite, Gromov hyperbolic spaces with least-cost path routing (and subject to a technical condition on the Gromov boundary) have a congestion core, defined as a subnetwork that routing paths have a high probability of visiting. Here, we consider quantum networks, more specifically spin chains, define the so-called maximum excitation transfer probability \(p_{\max }(i,j)\) between spin \(i\) and spin \(j\) and show that the central spin has among all other spins the lowest probability of being excited or transmitting its excitation. The anti-core is singled out by analytical formulas for \(p_{\mathrm{max}}(i,j)\) , revealing the number theoretic properties of quantum chains. By engineering the chain, we further show that this probability can be made vanishingly small.  相似文献   

16.
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. CRNs have been shown to be efficiently Turing-universal (i.e., able to simulate arbitrary algorithms) when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates (a multi-dimensional generalization of “eventually periodic” sets). We introduce the notion of function, rather than predicate, computation by representing the output of a function \({f:{\mathbb{N}}^k\to{\mathbb{N}}^l}\) by a count of some molecular species, i.e., if the CRN starts with \(x_1,\ldots,x_k\) molecules of some “input” species \(X_1,\ldots,X_k, \) the CRN is guaranteed to converge to having \(f(x_1,\ldots,x_k)\) molecules of the “output” species \(Y_1,\ldots,Y_l\) . We show that a function \({f:{\mathbb{N}}^k \to {\mathbb{N}}^l}\) is deterministically computed by a CRN if and only if its graph \({\{({\bf x, y}) \in {\mathbb{N}}^k \times {\mathbb{N}}^l | f({\bf x}) = {\bf y}\}}\) is a semilinear set. Finally, we show that each semilinear function f (a function whose graph is a semilinear set) can be computed by a CRN on input x in expected time \(O(\hbox{polylog} \|{\bf x}\|_1)\) .  相似文献   

17.
In this paper, we introduce a new problem termed query reverse engineering (QRE). Given a database \(D\) and a result table \(T\) —the output of some known or unknown query \(Q\) on \(D\) —the goal of QRE is to reverse-engineer a query \(Q'\) such that the output of query \(Q'\) on database \(D\) (denoted by \(Q'(D)\) ) is equal to \(T\) (i.e., \(Q(D)\) ). The QRE problem has useful applications in database usability, data analysis, and data security. In this work, we propose a data-driven approach, TALOS for Tree-based classifier with At Least One Semantics, that is based on a novel dynamic data classification formulation and extend the approach to efficiently support the three key dimensions of the QRE problem: whether the input query is known/unknown, supporting different query fragments, and supporting multiple database versions.  相似文献   

18.
Information-theoretically secure (ITS) authentication is needed in quantum key distribution (QKD). In this paper, we study security of an ITS authentication scheme proposed by Wegman & Carter, in the case of partially known authentication key. This scheme uses a new authentication key in each authentication attempt, to select a hash function from an Almost Strongly Universal \(_2\) hash function family. The partial knowledge of the attacker is measured as the trace distance between the authentication key distribution and the uniform distribution; this is the usual measure in QKD. We provide direct proofs of security of the scheme, when using partially known key, first in the information-theoretic setting and then in terms of witness indistinguishability as used in the universal composability (UC) framework. We find that if the authentication procedure has a failure probability \(\varepsilon \) and the authentication key has an \(\varepsilon ^{\prime }\) trace distance to the uniform, then under ITS, the adversary’s success probability conditioned on an authentic message-tag pair is only bounded by \(\varepsilon +|\mathcal T |\varepsilon ^{\prime }\) , where \(|\mathcal T |\) is the size of the set of tags. Furthermore, the trace distance between the authentication key distribution and the uniform increases to \(|\mathcal T |\varepsilon ^{\prime }\) after having seen an authentic message-tag pair. Despite this, we are able to prove directly that the authenticated channel is indistinguishable from an (ideal) authentic channel (the desired functionality), except with probability less than \(\varepsilon +\varepsilon ^{\prime }\) . This proves that the scheme is ( \(\varepsilon +\varepsilon ^{\prime }\) )-UC-secure, without using the composability theorem.  相似文献   

19.
The hyper-torus network based on a three-dimensional hypercube was introduced recently. The hyper-torus \(QT(m,n)\) performs better than mesh type networks with a similar number of nodes in terms of the network cost. In this paper, we prove that if \(n\) is even, the bisection width of \(QT(m,n)\) is \(6n\) , whereas it is \(6n+2\) if it is odd. Second, we show that \(QT(m,n)\) contains a Hamiltonian cycle. In addition, its one-to-all and all-to-all broadcasting algorithms are introduced. All of these broadcasting algorithms are asymptotically optimal.  相似文献   

20.
Let \(E\) be a bounded subset of real line which contains its infimum and supremum. In this paper, we have defined the \(\phi -\) transform and its inverse, where \(\phi \) is a function from \(E\) into \((0,1]\) . We will have shown that real-valued integrable functions on \([a, b]\) and real-valued continuous functions on \(E\) can be approximated by this transformation with an arbitrary precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号