首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Owing to the potential application of Nitinol as an advanced structural material, it is essential to thoroughly understand the deformation and fracture behavior of Nitinol under various loading conditions. The present study explores the fracture behavior of Nitinol under quasistatic and dynamic loading, with emphasis on the fracture toughness and fracture mechanism of Nitinol. To this end, the precracked bend sample was employed to perform dynamic fracture testing using a modified (pulse-shaped) Hopkinson-pressure-bar-loaded fracture-testing system. The dynamic fracture initiation toughness was measured under stress-state equilibrium conditions at a loading rate of . To further investigate the fracture mechanism, additional dynamic fracture tests were performed using double-crack, four-point bend samples. The experimental results indicate that the dynamic fracture toughness of Nitinol is higher than it is under quasistatic loading, and that the loading rate influences the fracture mechanisms of Nitinol. The interplay between the dynamic strength of Nitinol and the activation stress for stress-induced martensite (SIM) transformation plays an important role in the fracture behavior of Nitinol. This article is based on a presentation given in the symposium “Dynamic Behavior of Materials,” which occurred February 26–March 1, 2007, during the TMS Annual Meeting in Orlando, FL, under the auspices of the TMS Structural Materials Division and the TMS/ASM Mechanical Behavior of Materials Committee.
Kenneth S. Vecchio (Professor)Email:
  相似文献   

12.
The phase transition and influence of the applied stress on the texture evolution in the as-cast Ni-Mn-Ga ferromagnetic shape-memory alloys were studied by the time-of-flight (TOF) neutron diffraction technique. The neutron diffraction experiments were performed on the General Purpose Powder Diffractometer (Argonne National Laboratory). Inverse pole figures were determined from the neutron data for characterizing the orientation distributions and variant selections of polycrystalline Ni-Mn-Ga alloys subjected to different uniaxial compression deformations. Texture analyses reveal that the initial texture for the parent phase in the as-cast specimen was composed of , , , and , which was weakened after the compression deformation. Moreover, a strong preferred selection of martensitic-twin variants (and ) was observed in the transformed martensite after a compression stress applied on the parent phase along the cyclindrical axis of the specimens. The preferred selection of variants can be well explained by considering the grain/variant-orientation-dependent Bain-distortion energy. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.  相似文献   

13.
The deformation behavior of a Burgers oriented α-β-Ti-13Mn bimetallic bicrystal was studied at two plastic strains, 0.52 and 2.08 pct. Two single crystals, α and β, each corresponding to the orientation of its respective bicrystal component were also investigated. The stress axes were and [1218]β. The interface planes were and and lay in the x’-z’ plane. The deformation behavior of the a component differed from that of the a single crystal because of plastically induced stresses,T y’z’ ,T x’z’ ,T x’y’ , and σ x’x’ . Prismatic slip and twinning were found in the single crystal α whereas the bicrystal revealed additionally pyramidal andc + a slip, the latter at the interface. Slip on the front and back surfaces was different and both thec + a and twinning systems acted to maintain compatibility. Slip in the β single crystal and the β bicrystal component were quite similar. However, there were differences in the intensity and amount of primary slip, (231) , on the front and back surfaces. The diminished amount of (231) slip on the back surface was due to plastically induced stresses, and on the front surface the primary slip cross slipped to slip which triggeredc + a slip in α. On the back surface the dominant slip system was which acted in response to the plastically induced stresses. An approximate calculation revealed that the interface deformation zone had about twice the flow stress of the average bicrystal stress. Formerly a Graduate Student in the Department of Physical and Engineering Metallurgy at Polytechnic Institute of New York, Brooklyn, NY  相似文献   

14.
The ordering mechanism of long-period superstructures (LPSs) in Al-rich TiAl alloys has been investigated by high-resolution transmission electron microscopy (HRTEM). The LPSs are classified in terms of arrangements of base clusters with different shapes and compositions formed in Ti-rich (002) layers of L10-TiAl matrix: square Ti4Al, fat rhombus Ti3Al, and lean rhombus Ti2Al type clusters. The HRTEM observations revealed that antiphase boundaries of long-range-ordered LPS domains and short-range-ordered microdomains are constructed by various space-filling arrangements of the base clusters. Such a microscopic property characterized by the base clusters and their arrangements is markedly analogous to that of the * special-point ordering alloys such as Ni-Mo. This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.
S. Hata (Associate Professor)Email:
  相似文献   

15.
16.
17.
Ternary interdiffusion coefficients were measured in the Ni solid solution γ (fcc) phase of the Ni-Cr-Al system at 1100 and 1200 °C. Extensive use was made of both γ/γ and γ/γ + β (β-NiAl structure) diffusion couples. Two analysis techniques were employed to calculate the interdiffusion coefficients. When the Matano planes for Al and Cr were not coincident, numerous integral calculations were made to determine an average diffusion coefficient and to assess the effect of the noncoincidence of the Matano planes. The results of the diffusivity measurements showed that is approximately four times greater than , while and are of the same magnitude. For all concentrations, is two to three times greater than . Both and increase with increasing Al concentration, whereas and show little concentration dependence on Cr alone. A ternary, finite-difference interdiffusion model was employed to predict concentration profiles for the γ/γ couples utilizing the concentration dependence of the measured diffusivities. Good agreement was observed between the predicted and measured concentration profiles for both 1100 and 1200 °C.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号