首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
用XRD、TEM、Mossbauer谱和VSM等实验方法,研究了不同Pr含量、B含量和Cu含量的Pr2Fe14B/α—Fe型纳米复合快淬带的显微结构与磁性。结果表明:PrxFe94-x,B6合金在x=8(α—Fe体积分数约30%)时磁性能最佳,Br=1.29T,Hci=461.7kA/m,(BH)man=165.6kJ/m^3;Pr6.5(Fe8.5Co0.2)86.5—xCuxB5合金在x=0.5时获得最佳的磁性能;随B含量增加,富B相在晶界分布,Pr8Fe92-xBx交换耦合减弱,磁性能单调下降。  相似文献   

2.
采用熔体单辊急冷法制备了非晶(Fe1-x Co x)86Hf7B6Cu1(x=0.4~0.6)合金,使用穆斯堡尔谱仪、透射电镜(TEM)和振动样品磁强计(VSM)对其进行了表征,穆斯堡尔谱和TEM结果表明所制样品均为非晶态。然后借助于固体与分子经验电子理论(EET理论),计算了非晶(Fe1-x Co x)86Hf7B6Cu1合金的价电子结构和磁矩,磁矩的理论计算值与实验测定值的误差小于10%,满足一级近似要求,实现了从价电子层次上计算非晶(Fe1-x Co x)86Hf7B6Cu1合金的磁矩,这对于优化非晶合金(Fe1-x Co x)86Hf7B6Cu1的软磁性能将具有理论指导意义。  相似文献   

3.
研究了Co含量对熔体快淬Fe_(55-x)Co_xPt_(15)B_(30)(x=0~45,原子分数,%)合金热处理前后的组织结构和磁性能的影响。结果表明,添加Co可提高Fe_(55-x)Co_xPt_(15)B_(30)合金的非晶形成能力,使x=15~45的快淬合金形成非晶态。经适当热处理后,合金中形成了由有序面心四方结构的永磁(Fe,Co)-Pt(L1_0)相和软磁(Fe,Co)2B相及(Fe,Co)B相组成的纳米复相组织,显示出永磁性;添加Co的合金组织得到明显细化,x=15~45合金平均晶粒尺寸均约为18 nm;其中x=15合金具有最佳的永磁性能,磁能积达到94.4 k J/m3。合金的矫顽力随Co含量的增加而增大,在x=30时达到最大值413.7 k A/m后,随Co含量的进一步增加而减小;这是由于不同Co含量使L1_0相的c/a值发生变化而导致其磁晶各向异性变化的结果。  相似文献   

4.
采用单辊快淬法制备(Fe1-x Cox)80Zr10B10(x=0,0.1,0.2,0.3)非晶合金,并对4种合金在不同温度下进行等温热处理。利用差热分析仪(DTA),X射线衍射仪(XRD),透射电镜(TEM)和振动样品磁强计(VSM)等测试手段对样品的热性能、微观结构及磁性能进行研究。结果表明,未添加Co元素的Fe80Zr10B10合金的热稳定性明显高于添加Co元素的合金,而(Fe1-x Cox)80Zr10B10(x=0.1,0.2,0.3)合金的热稳定性相差不大。Fe80Zr10B10和Fe72Co8Zr10B10合金的晶化过程相似;Fe64Co16Zr10B10和Fe56Co24Zr10B10合金的晶化过程相似。4种合金的矫顽力(Hc)呈现先上升后下降的趋势,在873 K达到最大值。  相似文献   

5.
用单辊快淬法制备Fe74Nb6-xYxB20(x=3 at%、4 at%、5 at%)非晶合金,取不同的温度对合金热处理,利用差热分析仪(DTA)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、振动样品磁强计(VSM)研究了合金的非晶形成能力、晶化过程和磁性能。结果表明,添加微量Y元素提高了合金的非晶形成能力,当Y含量为5 at%时,Fe74Nb1Y5B20非晶合金过冷液相区具有最大值、△Tx=63℃。Fe74Nb6-xYxB20(3 at%、4 at%、5 at%)合金的晶化过程为:非晶→非晶+α-Fe+Fe23B6+Fe2B→α-Fe+Fe23B6+Fe2B。随着退火温度的升高,3种合金Fe74Nb6-xYxB20(x=3 at%、4 at%、5 at%)饱和磁化强度MS变化趋势是一致的,在670℃退火后3种合金MS均达到最大、分别为128、122、134 A·m2·kg-1,矫顽力Hc为2.96、3.12、3.36 kA·m-1,在750℃退火后,Hc快速增大。  相似文献   

6.
利用快速退火(RTA)以600℃/min的升温速车到预期温度后,在极短保温时间内完成热处理过程,与传统热处理(CRA)的Nd-Fe-B(Nd=6~12,B=3~9)对合金的磁性和微结构作了对比。合金成分分作3组:Fe-Nd2Fe14B两相系统;固定6at%B;固定9.5at%Nd.用单辊快淬法制备样品,辊速万或40m/s.热处理分两组,一组是采用传统热处理,升温速率100℃/min,温度550~800℃,保温2~30min。另一组则采用快速退火热处理.矫顽力和磁化强度随着温度上升而增加,最佳条件为700℃,保温Zmin。超过7Mt,矫顽力随处理温度升高而快速下降.…  相似文献   

7.
采用X射线衍射,差热分析和居里温度测量等方法研究Fe60.5-x Pt39.5Ndx合金的相转变、居里温度和有序度。结果表明:Nd的添加有利于稳定FCC相结构;随着Nd含量x的增加,Fe60.5-xPt39.5Ndx合金的有序度及有序FCT相的居里温度都逐渐减小  相似文献   

8.
采用铜模吸铸法制备[Fe0.71(DyxNd1-x)0.05B0.24]96Nb4(x=0-1,摩尔分数)块体合金,利用X射线衍射(XRD)、差示扫描量热仪(DSC)和振动样品磁强计(VSM)研究合金的非晶形成能力(GFA)和磁性能。结果表明:该体系合金均具有较好的非晶形成能力,可制备出直径为2 mm的完全非晶合金,随着Dy含量(x)的增加,合金的非晶形成能力逐渐增强。当x=1时,可制得直径为3 mm的完全非晶合金;饱和磁化强度(Ms)由x=0时的Ms=97.59 A·m2/kg逐渐降低到x=1时的Ms=75.85 A·m2/kg。该体系直径为2 mm的块体非晶合金均表现为明显的软磁性特征。  相似文献   

9.
用振动样品磁强计(VSM)研究了PrxFe94.3-xB5.7Zr1(x=9.4,9.8,10.2,10.6,11,11.4)系列快淬带在淬速V=22m/s的淬态和真空退火态(670℃)样品的磁性能和磁滞回线的变化情况,发现该系列合金在淬速V=20m/s下样品S2(Pr11Fe83.3B5.7Zr1)取得了最好的磁性能为:Jc=0.76T,Hc=977.3kA/m,(BH)max=98.8kJ/m^3;最佳快淬和晶化热处理都可以使软磁相与硬磁相耦合。  相似文献   

10.
在SmCo5.5合金粉末中添加Co粉配成SmCox(x=6,8.5,10)3种粉末.抽真空后充氮气作为保护气体,最后经球磨机干式研磨,球磨时间16h,转速每分120转,磨球与粉末重量比为80:1.球磨后的非品粉末经750℃退火热处理,20ruin后桥出urn级细品.实验得出:最大外加磁场n时,合金完全达到磁饱和状态,矫顽力从一296hA/m,剩余磁感从一0.94T,磁能积(BH)。x一81.6kJ/m‘。当x—6,7时,由相分析可看出为SmCO。/Sm2C017双相结构,当X—8.ilo.0,11.0时则形成纳米品SnyC01,/CO双相结构.对于SmCO。由透射电镜看出,黑色析…  相似文献   

11.
将(Nd1-xLax)9.5Fe85.5B5合金(X=0,005,0.1,0.15)用单辊快淬法制成薄带。选择下列不同辊速:25m/s,20m/s,18m/s,15m/S和10m/s.热处理选择650℃、675℃和700℃,保温时间10min.实验目的主要是观察La对磁性能的影响.结果表明:添加La的合金在辊速低时也能获得良好磁性.La可使游离铁和(Nd,La)ZFe;。B的晶粒细化并增加游离铁和(Nd,La)/e;p之间的交换耦会效应.但剩磁增加幅度不大.内禀矫顽力虽未能因硬碰相(Nd,La)ZFCI‘B晶粒细化而提高,但改善了退磁曲线的方形度,孩能积也增加了.合金落带在…  相似文献   

12.
采用单辊快淬法制备(Fe1-xCox)76Zr9B15(x=0,0.25,0.5)非晶合金薄带,并对3种合金进行不同温度热处理。利用差热分析仪(DTA)、X射线衍射仪(XRD)和振动样品磁强计(VSM)研究3种合金的晶化行为、微观结构和磁性能。结果表明,Fe76Zr9B15、Fe57Co19Zr9B15和Fe38Co38Zr9B15合金的晶化激活能分别为363.50、434.86和536.33 k J/mol。Fe76Zr9B15非晶合金的初始晶化产物为Fe23B6型相和α-Fe相,Fe57Co19Zr9B15非晶合金的初始晶化产物为α-Mn型相和α-Fe(Co)相,Fe38Co38Zr9B15非晶合金的初始晶化产物为α-Fe(Co)相。随着热处理温度的增加,(Fe1-xCox)76Zr9B15(x=0,0.25,0.5)合金的矫顽力随各自晶化产物的不同而发生改变。  相似文献   

13.
块体非晶合金Fe-Ni-P-B-Ga的制备与性能   总被引:8,自引:0,他引:8  
甘章华  王敬丰  肖建中 《金属学报》2003,39(10):1085-1088
采用助熔剂净化和铜模铸造相结合的工艺,用工业纯原料制备出块体(Fe40Ni40P14B6)100-xGax(x=0-8)合金,样品为直径3mm的圆柱体或宽6mm、厚1mm的片材,长度都在10至15mm左右,XRD与DSC分析表明,x=4—6时易于形成非晶合金,测试表明,这些非晶合金具有优异的耐腐蚀性能和软磁性能,显微硬度测试表明,对相同成分合金,非晶态的显微硬度值比晶态的低,适量Ga的加入,提高了Fe—Ni—P—B合金的非晶形成能力。  相似文献   

14.
采用快淬、热处理及模压成形工艺,制备了成分为Nd10.5Fe78.4-xCo5ZrxB6.1(x=0,1.0,1.5,2.0,2.5)的5种粘结永磁体。采用XRD,DTA,TEM等方法对合金的组织结构和晶化行为进行了研究。结果表明:Zr含量的增加可提高材料的非晶形成能力;当Zr添加到一定量时,形成高熔点的Fe2Zr相,产生细化晶粒的作用;添加Zr元素显著地提高了合金的矫顽力,改善了退磁曲线矩形度,从而提高了最大磁能积。Nd10.5Fe78.4-xCo5ZrxB6.1永磁体在x=2时获得最佳磁性能,Br=0.659T,Hcj=628kA/m,Hcb=419kA/m,(BH)m=73kJ/m^3。  相似文献   

15.
研究了B和Nb对Fe-Nb-B合金中纳米品和剩余非品基体的显微结构和内禀磁性的影响,并讨论了B和Nb的作用.用单辊熔体旅淬法制备Fe86-xNbxB14(X=0~8)合金.晶化行为和显微结构用差示扫描量热法和透射电镜研究,居里温度(Tc)和超精细场用热重力分析仪和57Fe穆斯堡尔诺测量.Fe86-xB14。(x=0~8)最初品化样品的品位尺寸,从x=0~4的>50nm减小到x=5~8的<20nm.x=4~6时激活能明显增加而晶粒尺寸明显减小.由于成核的激活能通常高于核生长的激活能.激活能的增加对成核机制到完全结晶过程有重大贡献.当x—4~6时晶粒尺寸减…  相似文献   

16.
利用熔旋快淬方法在辊速为40m/s时制备了低B的Fe85-xNb6.8B7.7Cux(x=0,1,3)快淬态薄带。Fe85Nb6.8B7.7和Fe85Nb6.8B77Cu1快淬态薄带具有α-Fe纳米晶结构,α-Fe的晶粒尺寸分别为23nm和20nm,Fe85Nb6.8B7.7快淬态薄带中还出现少量的杂相,但两者的软磁特性很差。而Fe85-xNb6.8B7.7Cu3.6.快淬态薄带的α—Fe的晶粒尺寸为13nm,在磁场20 Oe,频率1kHz下相对磁导率的变化为△μ/μ((0)=-44%,磁场90 Oe下交流频率为1.5MHz时磁阻抗△Z/Z0=-31.3%,显示了良好的软磁材料特点。  相似文献   

17.
稀土Y对Co43Fe20Ta5.5B31.5合金的非晶形成能力及性能的影响   总被引:1,自引:0,他引:1  
采用单辊甩带和铜模吹铸法,制备了(Co43Fe20Ta5.5B31.5)100-xYx(x=0.5,1,1.5,2,2.5,3)合金薄带及ф2mm的圆棒.X射线衍射及差热扫描量热分析表明:当x=3时合金具有最大的玻璃形成能力,可以很容易地制备出ф2 mm的非晶圆棒.该成分合金的约化玻璃转变温度Trg=0.657,参数γ=0.436,在所研究的系列成分中是最大的,这说明Trg和γ能够很好地表征Co-Fe-Ta-B合金的玻璃形成能力.压缩试验和磁滞回线测试表明,Y的添加导致Co-Fe-Ta-B非晶合金的压缩断裂强度和软磁性能急剧下降.ф2 mm的(Co43Fe20Ta5.5B31.5)97Y3非晶圆棒的压缩断裂强度为1852 Mpa,断裂应变为0.18%.与Co43Fe20Ta5.5B31.5非晶合金相比,(Co43Fe20Ta5.5B31.5)97Y3非晶合金的磁滞回线上存在约327×79.6 A/m的矫顽力,同时饱和磁感应强度也显著下降.  相似文献   

18.
龚彦  蒋成保  徐惠彬 《金属学报》2006,42(8):830-834
研究了(Fe0.81Ga0.19)100-xBx(x=0-20)合金的相组成和磁致伸缩特性.结果表明:x=1时,铸态合金由A2(bccFe(Ga))相和Fe2B相组成;x=5,10,15,20时,为A2相、L12(α—Fe3Ga)相和Fe2B相组成.800℃保温3h油淬后,当x=1,5时,为修正的DO3(Fe3Ga)相和Fe2B相组成;x=10,15,20时,为修正的D03相、L12相和Fe2B相组成.加入B元素后铸态合金的饱和磁致伸缩系数λs在x=1和10处出现峰值;油淬后随着B含量增加,合金的磁致伸缩系数先增大后减小,其中x=10合金的λs比相应油淬Fe81Ga19合金的λs增加了80%.油淬态合金,随B含量添加,析出Fe2B相,导致Fe-Ga合金基体中修正的D03相的Ga含量相应提高,磁致伸缩提高;随着B含量的进一步增加,合金中出现了过多的Fe2B相和L12相,磁致伸缩下降.  相似文献   

19.
利用熔体快淬法制备了(Nd Pr)6Fe79B15和(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15非晶带。通过X射线衍射(XRD)和差热分析(DSC),并借助Kempen模型和Kissinger方程,研究了合金的非晶晶化过程及非等温晶化动力学。结果表明,与(Nd Pr)6Fe79B15合金相比,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金的非晶形成能力明显提高,在9 m/s的辊速下获得了厚度为100μm以上的非晶厚带。2种合金的非晶厚带具有不同的晶化过程及晶化动力学机制。(Nd Pr)6Fe79B15合金的晶化分4步完成:非晶相(A)→Nd2Fe23B3+A’→α-Fe+Fe3B+Nd2Fe23B3’→α-Fe+Fe3B+Nd2Fe14B→α-Fe+Fe3B+Nd2Fe14B+Nd1Fe4B4;而(Nd Pr,Dy)6Fe74.5Co3-Cu0.5Zr1B15合金的晶化分两步完成:非晶相(A)→Fe3B+A’→α-Fe+Fe3B+Nd2Fe14B。与(Nd Pr)6Fe79B15合金由界面控制的多晶型晶化不同,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金第1步为界面控制的多晶型晶化,第2步则以扩散控制的共晶型晶化为主。由于退火后组织结构的细化和改善,(Nd Pr,Dy)6Fe74.5Co3Cu0.5Zr1B15合金带的磁性能明显优于(Nd Pr)6Fe79B15合金带。  相似文献   

20.
MA Fe-(Nb,Ti)-B纳米晶粉末热压烧结及磁性能   总被引:1,自引:0,他引:1  
研究了MA法和热压烧结工艺制备的Fe84Nb7B9和Fe80Ti8B12合金粉末的产物及其块体合金的微观组织结构和磁性能。结果表明:(1)20hMA后,Fe84Nb7B9和Fe80Ti8B12均形成了单相bcc米晶过饱和固溶体,相对前者,后者纳米晶组织热稳定性明显提高,过饱和固溶体相分解温度略有降低;(2)在30MPa/900℃/0.5h热压条件下,Fe84Nb7B9和Fe80T8B12块体合金相对密度分别为96.7%和95.5%,相对前者(多相组织),后者由超细晶(50~200mm单相α-e组成;(3)Fe80TiB12块体合金软磁性能(σ8=198.6emu/g,Hc=54.6Oe)明显高于Fe84Nb7B9块体合金(σ8=162.9emu/g,Hc=105.1Oe),此与纳米晶粉末在热压烧结过程中所形成相的种类和晶粒尺寸大小有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号