首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To protect the interface against intermittent head–disk contact in hard disk drives, nanometer-thick perfluoropolyether (PFPE) films consisting of both “bonded” and “mobile” molecules are applied on the disk surfaces. Because of their different adsorption states and mobility, the bonded and mobile molecules are supposed to contribute differently to friction properties, which directly impact the stability of ultra-low flying head–disk interfaces. By measuring the friction force at light loads and low to high speeds as a function of bonded and mobile film thicknesses, we studied the contributions of bonded and mobile molecules to the dynamic friction of nanometer-thick PFPE films. We found that the friction coefficient of lubricant films without or with less bonded molecules increased as a power function of sliding speed, whereas that of lubricant films with more bonded molecules increased logarithmically with sliding speed. We suggest that these results can be explained by the following mechanisms: the dynamic friction of lubricant films without and with less bonded molecules is dominated by shear thinning behavior of mobile molecules, while that of lubricant films with more bonded molecules is governed by bonded molecules which lead to boundary lubrication.  相似文献   

2.
The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH2 deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp3 hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s−1 and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.  相似文献   

3.
The tribological chemistry of carbon dioxide and water vapor is studied on copper surfaces at high pressures, with a view to understand the gas-phase lubrication of copper–copper sliding contacts. The adsorption and film formation properties are studied on vapor-deposited copper films in an ultrahigh vacuum chamber using a quartz crystal microbalance. The nature of the reactively formed film is studied after reaction by ex situ X-ray photoelectron spectroscopy (XPS). Carbon dioxide adsorbs reversibly on copper, while water vapor adsorbs both reversibly and irreversibly, where XPS reveals that the irreversibly formed film consists of a mixture of cuprous oxide/hydroxide. Measuring the thickness of the cuprous oxide/hydroxide film as a function of water vapor pressure and temperature reveals that its thickness varies between about 6 and 14 Å and is proportional to the total amount of water adsorbed on the surface. This results in a cuprous oxide/hydroxide film that is thinner at higher temperatures. Measurements of the friction coefficient as a function of temperature and pressure in the presence of water vapor shows that it correlates with film thickness, reaching a limiting value of ~0.35 for thicker films.  相似文献   

4.
J. Takadoum 《Wear》1993,170(2):285-290
Friction and wear behaviour of alumina sliding on various materials (nickel, copper, titanium, aluminium, alumina) were investigated experimentally. Pin-on-disc tests were conducted in air at various relative humidity levels (RHL). The results show that the influence of humidity depends on the material of the couples. Tribological behaviour of alumina sliding on very reactive metals such as titanium and aluminium is not influenced by RHL. In contrast, the friction coefficient and wear mechanism of nickel and copper are strongly affected by adsorbed films of water vapour. Nickel implanted with boron was also studied. The friction and wear of implanted surfaces are drastically reduced due to a lowering of the nickel surface reactivity. The tribological behaviour of the Al2O3/Al2O3 couple is also sensitive to RHL. The variation of friction coefficient and wear of this system are discussed in terms of tribochemical reactions and crack propagation.  相似文献   

5.
Chen  Zhe  Liu  Yuhong  Luo  Jianbin 《机械工程学报(英文版)》2016,29(2):439-444
The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide (GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction (COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.  相似文献   

6.
The tribological behaviors of Babbitt alloy 16-16-2 sliding against aluminum bronze ZCuAl9Mn2 lubricated by sea water were systematically investigated in this paper. The results indicated that the friction coefficient decreased as the load increased to 30 N and then remained at a steady level at high loads, but decreased with increase in sliding speed. The wear rate increased with load, but decreased with sliding speed. The formation of basic lead carbonate Pb3(OH)2(CO3)2 during the sliding process played a critical role in the remaining low friction coefficient in sea water.  相似文献   

7.
类金刚石薄膜(DLC)具有十分优异的减摩耐磨性能,是一种极具发展潜力的固体润滑材料。但其摩擦学性能受到很多因素的影响,这些因素主要可以分为两大类:固有因素和外在因素。在不同的固有因素和外界因素影响下DLC薄膜的摩擦学性能会产生较大差异,这大大制约了人们对其摩擦学行为及摩擦机理的认识,限制了其应用范围的扩展。总结了目前有关DLC薄膜摩擦机理的三种理论,即转移膜理论、滑行界面石墨化理论和化学吸附钝化悬键理论,并在此基础上概括分析了各固有因素和外界因素对DLC薄膜摩擦学性能的影响及其机理,提出未来可以从基础理论和相关技术两方面对DLC薄膜的摩擦学性能展开深入研究。  相似文献   

8.
To investigate and understand the tribological behaviour of high-frequency tribosystems such as ultrasonic motors, a specific test method is necessary. This work reports on the construction of a test machine to evaluate the friction and wear behaviour of friction materials under ultrasonic fretting conditions, as well as giving some representative experimental results. Hard/soft (steel/polymer) and hard/hard (steel/alumina, alumina/alumina) couples were studied with respect to their application as contact materials in ultrasonic motors. Investigation of friction behaviour at high frequencies showed that friction-induced vibrations lead to friction forces of much lower magnitude than predicted by quasistationary friction coefficients obtained for sliding friction. The wear behaviour is characterised by abrasive, adhesive, fatigue and oxidative mechanisms, depending on the mating materials. For polymeric friction materials, the influence of fibre reinforcement and the incorporation of PTFE as a solid lubricant were evaluated. The presence of PTFE resulted in a strong improvement of both friction and wear behaviour.  相似文献   

9.
To obtain information on the tribological behaviour of silicon carbide at elevated temperatures, unlubricated ball-on-flat wear tests were conducted on sintered silicon carbide in self-mated sliding in air. The contact load was varied from 3.2 to 98.0 N, and a temperature range of 23°C to 1000°C was used. Scanning electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive spectroscopy were used to elucidate the wear mechanisms. The results of the tests and observations were employed to construct a wear transition diagram, which provides a summary of tribological information including friction coefficient, wear coefficient and wear mechanisms as a function of temperature and load. The wear transition diagram for the sintered silicon carbide studied is divided into four regions plus one transition zone. At room temperature, under high loads and high environmental humidity, the tribological behaviour is controlled by tribochemical reactions between the silicon carbide surface and water vapour in the environment. Under low loads and at temperatures below 250°C, wear occurs by ploughing and polishing. At temperatures about 250°C and under low loads, tribooxidation and formation of cylindrical wear particles control the tribological behaviour. Wear occurs by microfracture when the load is increased above a critical value; and both the friction coefficient and the wear coefficient increase.  相似文献   

10.
The tribological behavior of 30 vol% carbon fiber–reinforced polyetheretherketone (CFRPEEK) against AISI 431 steel under different temperatures of water lubrication was investigated. Friction and wear tests were carried out on a disc-on-disc contact test apparatus under different operating conditions. The results reveal that the lubricant temperature has a significant effect on the friction and wear properties of CFRPEEK sliding against AISI 431 steel. The average friction coefficient and wear rate of CFRPEEK increase with increasing lubricant temperature. However, the wear rate of AISI 431 steel did not have a positive correlation with the wear rate of CFRPEEK under different temperatures of water lubrication. Moreover, the original and worn surfaces of CFRPEEK and AISI 431 steel were imaged by environmental scanning electron microscopy and optical microscopy, respectively. The main tribological mechanisms of CFRPEEK sliding against AISI 431 steel were adhesive wear, and increasing the temperature of the lubricant could accelerate wear.  相似文献   

11.
The effect of normal load and sliding speed on the tribological properties of a thin film of ultra-high-molecular-weight polyethylene (UHMWPE) coated onto a polyether ether ketone (PEEK) substrate sliding against a stainless steel ball in dry conditions are investigated. Wear tests are carried out with a ball-on-disc configuration to evaluate the tribological properties of the plasma-treated PEEK samples coated with UHMWPE film at different normal loads (5, 7, and 9 N) and linear speeds (0.1, 0.2, and 0.5 m/s). The coated samples exhibited a very low coefficient of friction of ~0.09 compared to that of uncoated PEEK samples, which showed a coefficient of friction of ~0.3.  相似文献   

12.
New knowledge about the tribological response deriving from the interaction of the substrate/coating-chip system, with special attention to the orthogonal cutting process when chatter-free end turning using natural contact tools, is developed. In order to evaluate the frictional behaviour of this process under modified contact conditions, experimental investigations including the contact temperature, the contact loads, friction and the frictional heat flux per unit area were carried out. In contrast to the most obvious approach, the coefficient of sliding friction versus the cutting speed, the contact temperature, the normal pressure and the interface control factor is considered. A number of different coating structures, starting from single up to three and four layer films, in combination with medium carbon and austenitic stainless steels, were tested. It is pointed out that the results obtained provide a modified approach to the frictional behaviour of the cutting process and its controllability. Among various responses, specific for such tribo-contact pairs, of particular interest is the self-adaptation resulting in controlled generation of friction energy and conduction of the frictional heat flux.  相似文献   

13.
Abstract

An attempt on modification of tribological behaviour of cotton polyester composite was done with polytetrafluoroethylene (PTFE). PTFE modified polyester–cotton composites were developed and studied for their friction and sliding wear behaviour at different applied loads. The sliding wear tests of composites were conducted against EN-31 steel counter face. The coefficient of friction μ as well as the sliding wear rate of cotton–polyester composites reduced significantly on addition of PTFE. The reduction in wear rate of PTFE modified polyester–cotton composite has been discussed with the help of SEM observations of worn surfaces and coefficient of friction.  相似文献   

14.
The effects of normal load, sliding speed, and surface roughness on the friction and wear of high-purity niobium (Nb) during sliding without and with an introduction of water were systematically investigated. Increasing the normal load or sliding speed decreased the friction of the Nb under the both dry and wet conditions because the increased wear of the Nb decreased the interfacial shear strength between the steel ball and Nb by promoting the surface roughening and the production of wear debris. However, the Nb tested at the lowest sliding speed under the lowest normal load with water exhibited the lowest friction and wear due to the formation of oxide layer on the wear track. The friction and wear of the Nb tested under the dry condition decreased with increased surface roughness because the higher interfacial shear strength between the steel ball and smoother Nb resulted in the earlier breakdown of the native oxide layer and direct contact between the steel ball and Nb. However, increasing the surface roughness of the Nb increased its friction and wear under wet conditions, probably due to the easier breakdown of the oxide layer that formed on the rougher surface during sliding. The tribological results clearly showed that the introduction of water during sliding had a significant influence on the tribological properties of the Nb.  相似文献   

15.
Measurements are presented of the friction and wear during sliding of specimens of Nimonic 75, C263, Nimonic 108 and Incoloy 901 on like specimens in air nominally at room temperature. The worn specimens have been examined using microhardness measurements, optical and scanning electron microscopy, X-ray diffraction and electron diffraction. These techniques suggest mechanisms for the room-temperature wear of these alloys associated with their strength properties. In particular, changes in the coefficient of friction and the wear rate during sliding can be correlated with work hardening, and possibly some degree of age hardening, of the load-bearing areas, due to the severe mechanical and thermal stresses developed. There is no evidence that oxide films formed on the contact areas during sliding have a significant effect on the tribological behaviour of these alloys. Such films are merely removed from the surface as wear debris.  相似文献   

16.
《Wear》2007,262(3-4):411-423
The traditional method of using the continuous variation of the friction coefficient with sliding distance to monitor the tribological properties between the contacts of soft metal films is generally low in sensitivity. This paper proposed the novel method of using instead the continuous variation of tribo-electrification voltage. This method was investigated experimentally for the dry friction sliding of iron on copper coated with a thin film of tin and was shown to be much superior to the traditional method in terms of sensitivity and ease of implementation. Moreover, it was observed that the continuous variations of the friction coefficient with sliding distance was very unstable but remained positive, making it indiscriminative for monitoring the tribological properties between the hard metal films. The continuous variations of the tribo-electrification voltage, on the other hand, showed either positive or negative polarity depending on the metal pairs, which allowed the identification of the surface where friction had occurred as well as the sliding surface. Finally, two continuous models to represent the tribo-electrification mechanisms for iron sliding against copper coated with a thin film of tin or nickel at different normal loads were proposed.  相似文献   

17.
Two layered sodium silicate products were prepared using a new ion exchange method called the freezing titration ion exchange. The tribological properties of the ion exchange products as additives in mineral oil were evaluated using a four-ball tester. The products exhibited excellent friction behavior when used as additives in mineral oil. When 1 wt% was added, the tribological properties of the oils improved: the maximum non-seizure loads increased by over 27% and the wear scar diameter and friction coefficient decreased by over 50% and 25%, respectively. The friction and wear behaviors of the silicates were better than those of the typical lubricant additives.  相似文献   

18.
The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a‐C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120°C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s−1. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70°C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a‐C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
《Tribology International》2003,36(4-6):217-225
This paper presents wear and friction studies on ultra-thin (~2 nm) film of perfluoropolyether (PFPE) coated on glass substrate magnetic hard disks. The lubricant was coated on the disk by the dip-coating method and the tribological tests were carried out by sliding a 3 mm diameter glass ball slider (normal load=20 mN) on the rotating disk surface. Lube thickness and lube wear profile were measured using an ellipsometer whereas the worn disk surface was studied using a surface reflectivity analyzer. The sliding speed and the lube bonding conditions were varied during the test. From the results, it is concluded that about 80% bonding of the lube to the disk surface leads to an increase in the wear durability of the lubricant by a factor of 2 when compared to the as-lubed condition. Lube bonding has an effect on increasing the coefficient of friction. Initially, increasing sliding speed increases both friction and wear but for very high sliding speed these values tend to decrease. The glass ball surface showed wear due to asperity interactions as well as lube transfer from the disk to the glass surface.  相似文献   

20.
Abstract

To develop new solid lubricant films based on low friction multilayer model, nanoperiod Au and Ag multilayer films are deposited. The results of nanoindentation tests reveal that multilayer films exhibit a higher elastic modulus, a higher hardness and a lower modulus of dissipation energy than single layer films. From the ball on disc tribological test, the friction coefficient of multilayer film μ is as low as ~0·05. The friction life cycle of the nanoperiod multilayer films is longer than those of single layer films. The electrical resistivity of nanoperiod multilayer films induced by sliding is a little higher, and the change in that is less than that of single layer films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号