首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为实现纤维增强延性水泥基复合材料高强度与高延性的匹配,在原有材料体系中附加钢纤维,试验研究了混杂聚乙烯醇(PVA)/钢纤维增强延性水泥基复合材料的轴拉、抗压性能.结果表明:随着钢纤维掺量的增加,混杂纤维增强延性水泥基复合材料开裂强度和抗拉强度不断提高,裂纹宽度显著降低,且钢纤维对高强基材的作用效果更加显著;当钢纤维掺量适量时,混杂纤维增强延性水泥基复合材料的极限拉应变得到有效提升,而钢纤维掺量对抗压性能的影响并不显著;PVA纤维和钢纤维混杂可获得高强度、高延性和低裂纹宽度的水泥基复合材料.  相似文献   

2.
高温是高延性水泥基复合材料(ECC)在服役过程中可能面临的最不利工况之一,对比研究了聚乙烯醇纤维增强ECC(PVA-ECC)与钢纤维/聚乙烯醇纤维混杂增强ECC(HyECC)在常温以及200℃、400℃、600℃高温作用后的拉伸性能。研究发现,常温下利用钢纤维等量替代PVA纤维将劣化PVA-ECC的拉伸应变硬化能力。高温对PVA-ECC和HyECC的拉伸强度和拉伸韧性均有明显的劣化作用,高温作用后均已不具备拉伸应变硬化能力;PVA-ECC的拉伸强度与拉伸韧性随温度呈指数型衰减,钢纤维可以减缓HyECC拉伸强度与拉伸韧性的衰减速率;高温作用改变了PVA-ECC和HyECC的微观结构,PVA纤维在200℃时的软化以及400℃后的分解是2种ECC材料拉伸性能高温劣化的主要原因。  相似文献   

3.
混杂纤维延性水泥基材料单轴受压力学特性   总被引:1,自引:1,他引:0  
针对纤维增强延性水泥基材料(ECC)在高强度等级下的抗压韧性退化问题,在传统ECC体系中附加微细钢纤维,制备混杂聚乙烯醇(PVA)-钢纤维增强延性水泥基材料.通过圆柱体抗压试验研究混杂纤维延性水泥基材料的单轴受压力学特性.结果表明:随着钢纤维掺量的增加,材料受压应力-应变曲线的上升段斜率呈增大趋势,而曲线下降段逐渐平缓,残余应力水平显著提升;混杂纤维延性水泥基材料的单轴抗压强度、弹性模量和峰值应变随钢纤维掺量增加小幅提升,而材料抗压韧性指标的提升效果较为显著;PVA纤维与钢纤维混杂在改善ECC抗压韧性方面具有独特优势,实现了高强ECC的抗压韧性.  相似文献   

4.
基于水泥基复合材料多尺度的结构特征,设计了一种由聚乙烯醇(PVA)纤维以及碳酸钙晶须增强的新型多尺度超高韧性水泥基复合材料(Mutil Scale-Ultra High Toughness Cementitious Composite,简称MSUHTCC),并研究了16组MS-UHTCC配比的抗压强度和单轴拉伸性能,探讨了晶须和PVA纤维对水泥基的增强机理。结果表明:晶须的掺入可提高UHTCC的抗压强度、延性及抗拉强度,MS-UHTCC在单拉作用下表现出明显的应变硬化行为和多缝开裂模式,利用碳酸钙晶须和国产PVA配制廉价MS-UHTCC具有可行性。  相似文献   

5.
刘雁宁  张涛  李杉 《混凝土》2022,(1):112-115
对混掺聚乙烯醇纤维(PVA)与12 mm两端直勾型精细钢纤维的水泥基复合材料进行立方体抗压和哑铃试件轴向拉伸试验,分析纤维掺量对混掺纤维水泥基复合材料抗压、抗拉强度和韧性的影响规律。结果表明:混掺精细钢纤维可以提高水泥基复合材料的立方体抗压强度、抗拉强度和韧性;随着精细钢纤维的增加,其抗压强度、抗拉强度和极限拉应变呈先增大后降低的趋势,当精细钢纤维掺量为1.2%时,28 d立方体抗压强度平均值比单掺PVA纤维提高了61.9%;当精细钢纤维掺量为0.8%时,28 d抗拉强度和极限拉应变分别比单掺PVA纤维提高了56.9%和240%。  相似文献   

6.
试验研究尾矿砂不同替代率,PVA纤维不同体积掺量,板不同厚度对尾矿砂水泥基复合材料在动力荷载作用下的影响。通过对试验现象、材料冲击能、延性指标和冲击疲劳强度的分析,试验结果表明:①PVA尾矿砂水泥基复合材料在动力荷载下损伤小、整体性强和能量耗散力强;②2%体积掺量的PVA纤维增加材料的韧性效果好;③PVA尾矿砂水泥基复合材料的尺寸效应显著,本次试验研究30mm板延性好;④PVA尾矿砂水泥基复合材料承受动力荷载时各项性能指标随着尾矿砂含量的增加而降低,因为工程应用建议采用尾矿砂替代率为50%。  相似文献   

7.
为了研究聚乙烯醇(PVA)纤维增强型水泥基复合材料高温后的力学性能,对30组共90个试件进行了力学性能试验,测得材料的立方体抗压强度、抗折强度、弹性模量、轴心抗压强度以及棱柱体单轴抗压应力-应变全曲线,并与相应基体的力学性能进行对比分析。结果表明:当加热温度低于200 ℃时,PVA纤维的掺入可有效改善水泥基复合材料的抗折强度和棱柱体单轴受压峰值荷载后的延性性能和韧性性能,降低弹性模量,对立方体抗压强度和棱柱体轴心抗压强度影响不大;温度高于200 ℃后,抗折强度、弹性模量和峰值荷载后的延性性能与韧性性能与基体接近,立方体抗压强度和轴心抗压强度均低于基体,轴心抗压强度下降幅度远远大于立方体抗压强度。  相似文献   

8.
聚乙烯醇纤维增强水泥基复合材料(PVA-ECC)具有抗拉强度高、受拉应变硬化和多点开裂等优点,是新型的延性水泥基材料,在建筑工程领域得到广泛使用。然而,该材料在高温作用下性能存在劣化现象,强度、延性降低将直接影响结构安全性,值得密切关注。研究了高强度(80 MPa)PVA-ECC的高温耐受性能,分别测试其残余力学性能并进行微观性能分析,并与低强PVA-ECC形成对比。结果表明,PVA纤维在200℃开始熔化,1 200℃则完全消失,桥接能力弱化显著。此外,材料强度越高,受高温作用后表观开裂现象越明显,但均未出现爆裂现象;ECC强度越高,高温作用后残余强度比降低;从SEM微观照片可知,试件在遭受高温作用后,内部孔隙变大,初始裂隙增加,是导致残余性能劣化的主要原因之一。  相似文献   

9.
《混凝土》2014,(8)
针对高延性水泥基复合材料收缩大、易开裂的问题,采用经级配优化的普通河砂替代磨细石英砂、国产短切粗PVA纤维替代进口纤维,制备了生态型高延性水泥基复合材料,并开展了不同强度等级生态型高延性水泥基复合材料的变形性能研究。结果显示,生态型高延性水泥基复合材料抗压强度为20~60MPa时,干燥收缩应变终值在1046~1255με之间,自干燥收缩终值在619~882με之间,圆环约束试件在7~14 d开裂,裂缝仅两条,最大裂缝宽度132μm。生态型高延性水泥基复合材料较传统高延性水泥基复合材料具有更好的综合抗裂性能。  相似文献   

10.
黄俊  姜弘道  陈瑛  许小兵 《混凝土》2006,(12):31-34
采用自行设计的试验加载装置,对在砂浆中分别掺人钢纤维、PVA纤维以及同时掺人两种纤维的水泥基复合材料进行了直接拉伸试验,成功地获得了完整的应力-应变全曲线.数据采集采用动态应变测试系统,结果表明,在砂浆中掺人钢纤维.可以大大提高基体的抗拉强度及韧性,试件的最终破坏取决于钢纤维与基体之间的界面粘结强度;在砂浆中掺人PVA纤维对提高基体的抗拉强度有限,但却可以较大幅度地提高基体的韧性,试件的破坏是随着纤维的逐渐断裂而破坏。混杂纤维增强砂浆的破坏形式则是由基体、钢纤维、PVA纤维的材料特性共同决定。  相似文献   

11.
掺加PVA纤维的应变硬化水泥基复合材料(SHCC)改善了水泥基材料的脆性,具有较高的抗拉强度和韧性。本研究通过力学性能试验考察了在不同温度作用下,内掺硅烷乳液的PVA-SHCC的抗折、抗压强度和弯曲韧性,结果表明,内掺硅烷乳液对SHCC的力学性能没有明显影响;PVA纤维能明显提高SHCC的强度和韧性,随着温度的升高,纤维增强作用逐渐消失。  相似文献   

12.
PVA纤维增强水泥基复合材料:性能与设计   总被引:1,自引:0,他引:1  
PVA纤维成为制备高延性纤维增强水泥基复合材料的首选而被广泛应用.综述了PVA纤维以及PVA纤维增强水泥基复合材料的基本性能,指出PVA-ECC性能设计应借助微观力学模型,从纤维的几何特性、纤维基体界面特性以及基体自身特性三方面进行研究分析,在此基础上,提出需要进一步研究的问题.  相似文献   

13.
高温后钢纤维高强混凝土力学性能试验研究   总被引:1,自引:0,他引:1  
赵军  高丹盈  王邦 《混凝土》2006,(11):4-6
通过对高温后钢纤维高强混凝土和素高强混凝土力学性能的试验研究,探讨了钢纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,分析了温度对钢纤维高强混凝土力学性能的影响机理。研究结果表明,钢纤维高强混凝土的抗压强度、抗拉强度和抗折强度随温度的升高而降低,在400℃以内,降低幅度较小,400℃以后显著降低,相同温度时,钢纤维提高了高强混凝土的高温后强度值。  相似文献   

14.
《混凝土》2015,(12)
聚乙烯醇(PVA)纤维-水泥基体界面性能是影响纤维增强复合材料的延性的重要因素,通过单纤维拔出试验原理系统介绍了PVA纤维-基体界面性能参数计算和PVA纤维在拔出试验中的破坏机理,结合扫描电镜(SEM)影像,详细说明了PVA纤维表面油剂处理、水泥基体组分(粉煤灰、水灰比和砂灰比及砂类型)变化对界面性能的影响。结果表明:经过表面油剂处理的PVA纤维形成的复合材料,高掺量粉煤灰和高水灰比条件下,PVA纤维-基体界面利于材料宏观高延性的形成,而砂灰比在一定范围内影响界面性能,同时界面性能对纤维增强复合材料的延性有重要影响。  相似文献   

15.
高延性水泥基复合材料(High Ductility Cementitious Composites,HDCC)是指在弯曲和拉伸荷载作用下具有应变硬化特性的水泥基复合材料,具有单轴拉伸延性好,耐久性能优异等优点。在材料设计中用大掺量的粉煤灰来替代水泥,以实现更加优异的高延性。本文研究了在聚乙烯醇(polyvinyl alcohol,PVA)纤维体积掺量为1.2%和1.4%时,同时掺入高炉矿渣与粉煤灰制备高延性水泥基复合材料,通过改变高炉矿渣与粉煤灰的掺量,得到试件的抗压强度、抗折强度与弯曲韧性,用以对比矿渣与粉煤灰不同质量比例对高延性水泥基复合材料力学性能、弯曲韧性和表面裂纹特征的影响规律。结果显示,当矿渣和粉煤灰掺量分别为总胶凝材料质量的40%和10%时,试件呈现出良好的应变硬化与多缝开裂特性,最大挠度达到10.79mm,极限拉应变为1.26%,裂纹数量达到14条。表明了矿渣的掺入有利于在保证高延性水泥基复合材料具有应变硬化特性的前提下,可以有效提高高延性水泥基复合材料中的强度和弯曲韧性,对于此类材料的工程应用十分有益。  相似文献   

16.
针对标准养护、70℃蒸汽养护、高温压蒸釜养护3种养护条件下的粒化高炉矿渣(GBFS)高强水泥基材料进行力学性能试验,研究了养护条件、水胶比和代砂率等对GBFS高强水泥基材料抗压强度、抗折强度、劈裂抗拉强度和弹性模量等力学性能的影响及其各力学性能之间的关系,并通过激光共聚焦显微镜分析了养护条件对GBFS高强水泥基材料微观结构的影响.结果表明:GBFS高强水泥基材料的强度发展规律与普通石英砂高强水泥基材料相一致,其抗压强度、抗折强度、劈裂抗拉强度及弹性模量均随水胶比的降低、养护龄期的增加及养护温度的增高而增大;相同配合比、相同养护条件下,GBFS高强水泥基材料的抗压强度等力学性能低于普通石英砂高强水泥基材料;70℃蒸汽养护和高温压蒸釜养护不仅能提高GBFS高强水泥基材料的早期强度,还使其后期强度的发展高于标准养护;3种养护条件下GBFS高强水泥基材料的抗折强度、抗劈裂拉强度及弹性模量均随着抗压强度的增加而增加,其中弹性模量与抗压强度的关系可用通常混凝土计算公式描述.微观形貌显示:在标准养护条件下,GBFS高强水泥基材料与普通石英砂高强水泥基材料一样,其骨料界面过渡区中的水泥浆体与骨料紧密结合,但可明显分辨;70℃蒸汽养护条件下,其骨料与胶凝浆体界面过渡区发育较致密;高温压蒸釜养护条件下,其骨料与胶凝材料融为一体,界面过渡区已无法分辨.  相似文献   

17.
立方体抗压强度和劈裂抗拉强度试验,是研究聚乙烯醇纤维对水泥基复合材料拉压比性能影响的最直接的方法。立方体试件的尺寸为100 mm×100 mm×100 mm,PVA纤维掺量分别为0、0.5%、1.0%、1.5%、2.0%,粉煤灰掺量为30%、50%。试验结果表明,掺入PVA纤维对立方体抗压强度影响不显著,而劈裂抗拉强度则提高了4264%~135.12%,拉压比提高36.82%~134.27%;30%粉煤灰掺量的水泥基复合材料比50%粉煤灰掺量的水泥基复合材料抗压强度高20%以上,但对劈裂抗拉强度影响不明显。PVA纤维水泥基复合材料立方体抗压试块裂缝开展路径较多,不易破碎,抗压韧性显著增强。  相似文献   

18.
以劈裂抗拉强度和变形性能为主要评价指标,研究了聚乙烯醇(PVA)纤维体积分数及水胶比对工程纤维增强水泥基复合材料(ECC)劈裂全程荷载-变形曲线与劈裂抗拉强度的影响规律.结果表明:PVA纤维体积分数达到1.5%后,纤维的增强阻裂作用较为明显,横跨裂缝的PVA纤维可通过"桥接"作用继续承担和传递拉力,使PVA-ECC试件在劈裂拉伸荷载作用下具有明显的变形强化特性,且其峰值抗拉强度和峰值变形明显增大,延性得到显著改善;水胶比越大,试件在劈裂裂缝处的PVA纤维越易拔出,其峰值变形明显增大,试件破坏时具有明显的塑性特征.基于测得的材料抗拉强度,分析了2种垫条方式下所测试件劈裂抗拉强度之间的关系及其与轴心抗拉强度的关系.  相似文献   

19.
刘杰  尹立强  刘曙光  闫长旺  鲁小宇 《混凝土》2023,(3):97-101+105
PVA纤维水泥基复合材料有着显著阻裂能力和拉伸性能,开展了PVA纤维水泥基材料抗折性能的研究。包括PVA纤维水泥基复合材料试件抗折性能试验、其破坏形态与承载力分析、建立与分析了在PVA纤维水泥基复合试件下的拱模型理论、提出新的承载力计算方法。研究得出:PVA纤维水泥基复合材料试件在纤维体积掺量为0.5%、1.0%、1.5%、2.0%时,抗折承载力随着纤维掺量的增加而增加,抗折性能得到显著提升;根据PVA纤维水泥基复合材料试件的不同受力阶段,分3种情况建立平衡方程,为计算抗折承载力提供了依据;建立了拱模型在PVA纤维水泥基复合材料试件下的抗折承载力计算理论,得到抗折承载力计算结果与试验值较为接近。  相似文献   

20.
高延性纤维增强水泥基复合材料(ECC)是一种高韧性延性土木工程材料,通过对13组288个ECC试件进行单轴抗压、劈裂抗拉及四点弯曲等试验,分析聚乙烯醇纤维(PVA)掺量、水胶比及粉煤灰掺量对ECC力学性能的影响规律。研究表明:水胶比及粉煤灰掺量是影响其抗压强度的主要因素,增加PVA掺量,ECC抗压强度变化较小,峰值应变值及极限应变值明显提高,峰值后延性较好;随着水胶比增加,ECC抗拉强度及抗弯强度降低,增加PVA掺量可明显提高抗拉及抗弯强度,PVA掺量为2.0%的ECC抗拉强度较基体提高53%,抗弯强度及弯曲韧度系数分别是相应基体的2.8倍及7倍,ECC在各种破坏荷载作用下可保持良好的整体性,未发生脆性破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号