首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用机械球磨法将纳米SnO2和Ni粉末复合,作为锂离子电池负极材料。采用XRD、SEM、TEM和EDS分析球磨过程中材料结构和形貌的变化。对SnO2/Ni复合负极材料的首次库仑效率、循环稳定性及CV曲线等进行测试分析。结果表明:将复合粉末球磨适当时间后,SnO2和Ni可形成结合充分、颗粒尺寸细小、分布均匀的复合材料;SnO2和Ni的复合可有效提高SnO2的首次库仑效率和循环稳定性;SnO2/Ni复合负极材料的循环稳定性随球磨时间的延长而增加,但电极的首次库仑效率随球磨时间的延长呈先增加后下降的趋势;Ni的引入有效减小了SnO2在首次充放电循环过程中生成Li2O的不可逆反应程度,并在随后的循环过程中部分以Li-O化合物的形式进行可逆反应。  相似文献   

2.
用水热法于150oC合成了CoSn2纳米合金负极材料。水热反应前还原剂NaBH4的加入速度和水热反应后的热处理均会影响产物的相组成和CoSn2合金组分的颗粒大小,从而影响电极的电化学性能。较大的CoSn2合金颗粒有利于降低电极的首次不可逆容量损失和提高循环稳定性。电极的循环性能还与循环电流密度有关,较小的初始电流密度能够充分激活活性颗粒的嵌锂通道,并在颗粒表面形成较好的固体电解质膜(SEI膜),有利于改善电极的循环性能。  相似文献   

3.
以碳化钙为原料、新鲜氯气为刻蚀剂,在400~700℃范围内制备碳化钙骨架碳作为锂离子电池新型负极材料.用X射线衍射(XRD)、扫描电镜(SEM)、氮气吸附实验、恒流充放电、交流阻抗(EIS)等对碳化钙骨架负极材料进行表征及电化学性能测试,并探讨制备温度对碳化钙骨架碳结构和电化学性能的影响.结果表明:所有温度下制备的碳化钙骨架碳均为无定形碳材料,但随着制备温度的升高,材料出现部分石墨化倾向;600℃制备的碳化钙骨架碳具有良好的电化学性能,在0.1 C充放电时,首次放电比容量为890.9 mA·h/g,可逆容量为335.4mA·h/g,循环30次后的可逆容量为266.8 mA·h/g.  相似文献   

4.
通过固相合成制备了钽掺杂材料Li4Ti4.95Ta0.05O12。通过XRD和SEM来表征Li4Ti4.95Ta0.05O12的结构和形貌。钽掺杂并没有改变本体材料的结构和形貌,而且显著提高了材料的循环性能和倍率性能。Li4Ti4.95Ta0.05O12在10C和30C倍率时的放电容量分别是116.1mA.h/g和91.0mA.h/g。Ta掺杂取代了Li4Ti5O12中的Ti的位置,产生了Ti4+/Ti3+混合价态,从而提高了钛酸锂的电导率。故具有优异的高倍率性能,是一种优异的锂离子电池负极材料。.  相似文献   

5.
以纳米二氧化锡和酚醛树脂为原料,借鉴模板法制备介孔炭的过程,根据碳热还原的原理制备纳米锡碳复合材料。运用X射线衍射,扫描电镜,循环伏安(CV)以及循环性能测试等手段对合成材料进行研究。结果表明,所得复合材料中锡颗粒粒径在100nm左右,其均匀分布于碳基体中所形成的较大孔隙中,该结构既能缓解充放电过程中锡颗粒的体积效应,又能增强电解液的浸润,利于锂离子的传导。锡含量为78.5%(质量分数,下同)的复合材料具有较好的综合性能:在200mA/g的电流密度下,首次放电容量达1070mAh/g,充放电效率为70%,30次循环后放电容量保持在560mAh/g,且倍率性能良好,当电流密度增大到1600mA/g时,材料依然保有440mAh/g的比容量。  相似文献   

6.
研究了掺杂锂元素对用作锂离子电池负极的石墨材料的结构与性能的影响. XRD及元素分析结果表明 锂以化合物的形式存在于石墨材料中, 由于缺陷结构的增加, 掺杂后石墨材料的BET比表面积略有增大. 电化学测试结果表明 预先掺锂能够有效减少首次充放电过程中的不可逆容量, 使石墨电极的可逆容量增加. 与未掺杂的热处理石墨比较, 可逆嵌锂容量由304.5 mA*h/g增加到312.2 mA*h/g, 首次充放电不可逆容量由66.4 mA*h/g减少到52.9 mA*h/g. 以掺锂改性石墨为负极制作成063448型锂离子电池后, 电池的容量和循环稳定性均得到改善, 以1C倍率充放电时, 放电容量可达845 mA*h, 循环200次后的容量保持率为91.65%.  相似文献   

7.
采用以柠檬酸为络合剂的溶胶-凝胶法,制备具有尖晶石结构的Li1.03CexMn1.97-xO4(x=0.01,0.02,0.03)系列化合物。材料的晶体结构通过X射线衍射光谱(XRD)法进行表征,而其电化学性能通过循环伏安法(CV)和恒流充放电进行表征。XRD结果表明,合成的锂锰氧化物具有典型的尖晶石结构,但随着掺杂量的增加,CeO2杂质相逐渐出现。通过循环伏安法进行测试,其氧化峰与还原峰峰型明显。分别采用1/3C和1C倍率对正极材料进行恒流充放电测试,结果发现,Li1.03Ce0.02Mn1.95O4具有良好的循环性能,因而适量Ce元素的掺杂可以有效的改善尖晶石型锰酸锂的循环性能。  相似文献   

8.
通过固相合法制备了新型锂离子电池负极材料Li1.1V0.9O2,考察不同合成工艺对其结构、形貌及电化学性能的影响。采用X射线衍射、扫描电子显微镜和恒电流充放电法研究了试样的结构、形貌和电化学性能。实验结果表明:采用两段烧结法合成的试样结构更完整、粒径分布更均匀、电化学性能更优良。在1 C倍率下,充电容量高达275 mAh/g,经过50次循环后,充电容量保持率高达96.73%。  相似文献   

9.
采用高温固相法合成Li4FexTi5-xO12(x=0.025,0.1,0.2)负极材料。通过X射线衍射、扫描电镜、充放电性能测试等对掺杂Fe3+的Li4Ti5O12材料的组成、结构、形貌进行表征,并对其电化学性能进行研究。结果表明,所合成的材料具有良好的尖晶石结构,无杂相。适当Fe3+掺杂能细化材料,提高材料的电子导电性,使材料的循环性能得到改善。Li4Fe0.025Ti4.975O12的充电容量最佳,0.1C倍率下首次充电比容量达到162.5 mA.h/g,循环性能较好。  相似文献   

10.
采用固相法合成了Li2Mn1-xMgxSiO4掺杂型正极材料,并用TG-DTA、XRD、SEM和电化学性能测试对材料进行了表征。前驱体的TG-DTA曲线和XRD物相分析表明,合成Li2MnSiO4时优化的煅烧温度为750℃。XRD测试表明Li2Mn1-xMgxSiO4具有正交结构,对应Pmn21空间群,掺镁可以提高样品主相的结晶度。掺Mg对微观形貌影响明显,适量掺杂可以得到粒径均匀、少团聚的亚微米级粉体。将Li2Mn1-xMgxSiO4组装成扣式电池进行电化学测试的结果表明,Li2Mn0.98Mg0.02SiO4样品性能最好,首次放电比容量达到124.6mAh/g,为理论容量的38%,循环20次后放电容量仍有60mAh/g。  相似文献   

11.
采用高温固相法合成Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C正极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗谱(EIS)和电化学测试技术等研究材料的结构、形貌和电化学性能。结果表明:Ni2+和Mn2+共掺杂后的LiFe0.95Ni0.02Mn0.03PO4/C材料仍然具有LiFePO4/C橄榄石型晶体结构,且掺杂后材料的放电比容量和循环性能都得到显著改善。在0.1C和1C下放电时,未掺杂LiFePO4/C的首次放电比容量仅分别为153和140 mA.h/g,而Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C材料首次放电比容量分别为165和145 mA.h/g,且在1C下循环100次后容量保持率仍然为97.6%。  相似文献   

12.
分别以钼酸铵和硫脲为钼源和硫源,在聚乙烯吡咯烷酮(PVP)软模板作用下,采用强化水热法在较短时间内制备出了近球形纯MoS2粉体材料。通过X射线衍射(XRD)、钨灯丝扫描电镜(SEM)、场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM),X射线光电子能谱(XPS)等表征方法,研究了近球形纯MoS2材料的微观形貌、晶体结构、元素组成及表面价态。结果表明:所制备得到的MoS2材料为由片状二硫化钼所构成的球体,尺寸为150 nm左右,经过500℃加热处理2h后,微观形貌不变。经过恒流充放电测试,其在500mA/g的电流密度下,加热处理前的MoS2材料首次放电比容量高达874.7 mAh/g,但存在较大的容量衰减,其循环充放电100次后容量保持率仅为53.3%,并且其首次充放电库伦效率仅为68.88%,直到第47次充放电时才稳定在100%;而经过500℃加热处理2h后的MoS2材料充放电的容量损失较小,循环稳定性增强,经过100次充放电后容量达571.3 mAh/g,容量保持率为83.2%,且库伦效率一直为100%稳定不衰减。加热处理后性能提升的原因一方面在于材料中残留氧化钼挥发,材料内部出现部分空隙,从而增大了活性物质与电解液的接触面积。另一方面加热处理提高了材料的结晶性,可以稳定MoS2的晶体结构,抑制嵌锂-脱嵌过程中的体积膨胀问题。  相似文献   

13.
新型纳米SnO2-CuO复合氧化物负极材料的制备与电化学性能   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了纳米SnO2-CuO复合粉末.运用热重和差热分析、X射线衍射、扫描电镜和红外光谱等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明,采用化学共沉淀法可以得到平均粒度为87 nm的SnO2-CuO粉末.在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大.纳米SnO2-CuO粉末的可逆容量可以达到752 mAh·g-1,经60次循环后,纳米SnO2-CuO粉末的容量保持率分别为93.6%,优于纳米SnO2(92.0%),说明掺杂CuO改善了纳米SnO2的循环性能.  相似文献   

14.
目的 提高锂离子电池TiO2负极的电化学性能.方法 采用微弧氧化技术在钛箔表面制备TiO2膜,再通过磁控溅射技术在TiO2膜上沉积Si/SiO2,制备出一种富含硅元素的微弧氧化复合膜.将该复合膜作为锂离子电池负极,锂片为对电极,组装电池.采用电池测试系统测量电池容量、循环稳定性等性能,通过电化学工作站获得循环伏安曲线、...  相似文献   

15.
以锡和锑的氧化物为原料,采用碳热还原法,制备了锂离子电池用微米级球形SnSb合金负极材料。材料表现出较低的首次不可逆容量和较好的循环性能。首次不可逆比容量为160mAh/g,可逆比容量达650mAh/g。其较低的比表面积是其较低的首次不可逆容量的主要原因,而颗粒的多晶特性则有利于电极材料循环稳定性的提高。同时采用循环伏安和交流阻抗测试研究了SnSb合金的电极反应过程。  相似文献   

16.
采用水热法合成了花状CuO和花状CuO/石墨烯复合材料。采用XRD、SEM、TEM、BET、TG对材料的结构、形貌及性能进行表征和分析。花状CuO由CuO的纳米片组成,平均直径为4.2μm,比表面积为12.6m2/g。与花状CuO相比,花状CuO/石墨烯复合材料具有更高的充放电容量和更优良的循环稳定性。在0.1C、1C倍率下,其放电容量分别为603mA·h/g、382mA·h/g;在1C倍率下,经过50次循环,其容量保持率高达95.5%。  相似文献   

17.
采用直流电弧等离子体方法合成了硅与氮化钛纳米复合材料,利用XRD,TEM等手段研究了其微观结构.结果显示,得到的纳米颗粒由Si和TiN以及部分Cu0.1Si1.9Ti组成,其形状为球形,颗粒尺寸大多分布在10~50 nm之间.用恒流充放电的方法研究了其作为锂离子电池负极的电化学行为,在锂的嵌入硅镍纳米颗粒的过程中,Si充当活性中心,而其中的TiN和Cu0.1Si1.9Ti作为惰性成分,不与Li反应,充当缓冲基体及导电剂的作用.当电流密度为150 mA·g-1时,电极的循环稳定性最好,首次可逆容量为737 mAh·g-1,20次循环后容量仍为542 mAh·g-1.在0.05~0.8V的电位区间的循环稳定性是最好的.  相似文献   

18.
《金属功能材料》2013,(5):55-56
锂离子电池作为清洁、高效、便携的储能方式之一,在很多领域内具有广阔的应用前景。如何实现高容量、大功率和长寿命的锂离子电池,依赖于其中各核心部件的结构设计和性能提升。负极材料作为锂离子电池的主要部件之一,所面临的主要问题在于其导电性差和体积效应大。这就容易导致活性材料粉化,从电极表面脱落,因而造成循环容量和倍率性能的下降。  相似文献   

19.
采用化学还原法得到纳米级Sn-Co粉末,再经过与硬碳粉混合球磨得到Sn-Co-C复合粉体.能谱测试表明,样品Sn、Co、C原子分数分别为3.89%、1.47%、94.64%.SEM观察显示,50~100 nm锡钴微粒附着在片状的硬碳颗粒上.复合粉体与锂片组成模拟电池,首次放电比容量为558.4 mAh/g,首次充电比容量为338.5 mAh/g.30次循环后,放电比容量保持在348.2 mAh/g,保持率为62.4%;充电比容量保持在335.4 mAh/g,保持率为99.1%.充放电比容量较硬碳提高3倍左右.由分析放电曲线可知,第一次放电后在电极表面形成了固体电解质界面膜(SEI)膜,循环一次后该膜消失.  相似文献   

20.
锂离子电池中纳米Cu-Sn合金负极材料的制备与性能研究   总被引:6,自引:1,他引:5  
将反相微乳液工艺用于制备纳米储锂合金,成功地制备出了具有非晶结构的Cu-Sn合金纳米颗粒,避免了电极的粉化问题,改善了合金负极的循环性能.但纳米合金表面固体电解质膜(SEI膜)的成膜反应造成了较大的不可逆容量.纳米颗粒之间的接触电阻导致了电极导电性较差.实验证明,纳米Cu-Sn合金的颗粒尺寸与电极中导电剂含量的匹配问题对电极的电化学性能有较大的影响,当导电剂含量为40%时,粒径范围在50-60nm的Cu-Sn合金具有最佳的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号