共查询到20条相似文献,搜索用时 0 毫秒
1.
利用(R,S)-仲丁胺和丙烯酰氯酰化生成的单体N-仲丁基丙烯酰胺(BAM),与N-异丙基丙烯酰胺(NIPAM)共聚制得了分子识别型温敏智能高分子(简称PNB)。对PNB进行了成分分析,通过浊度法测定PNB的低临界溶解温度(LC-ST),并研究了PNB对L-色氨酸(L-Trp)的识别特性。研究发现,PNB具有良好的温敏性和分子识别特性。PNB的LC-ST随其中疏水性BAM含量的增加而降低;高分子水溶液在添加L-Trp后LCST向高温方向迁移。 相似文献
2.
李智慧刘志景段翔远高旭静刘文涛何素芹朱诚身 《高分子材料科学与工程》2013,(4):69-73
以N-异丙基丙烯酰胺(NIPA)为聚合单体,分别采用连续和间歇方式无皂乳液聚合法制备了单分散性良好且粒径可精确控制的PNIPA纳米凝胶。用原子力显微镜(AFM)和透射电镜(TEM)等方法对纳米凝胶的结构、形貌和粒径及其分布进行了表征,用分子力学模拟法研究了纳米凝胶的分子链发生体积相转变前后分子构象的变化。结果表明,PNI-PA纳米凝胶的粒径随交联剂和乳化剂含量的增加而逐渐减小,连续式制备的PNIPA纳米凝胶比间歇式纳米凝胶的平均粒径小,PNIPA纳米凝胶的较低临界溶解温度(LCST)在32℃左右,PNIPA纳米凝胶分子链在LCST以上严重卷曲,在纳米凝胶分子链中存在很强的非键作用力。 相似文献
3.
研究具有较高LCST且响应速率快的温敏性水凝胶。以NaCl水溶液为反应介质,采用相分离法合成了多孔水凝胶P(NIPA-co-SA)。利用傅立叶变换红外光谱仪(FT-IR)表征产物结构,并借助扫描电子显微镜、差示扫描量热法(DSC)、浊度法等手段研究了反应介质浓度对产物微观形貌、相变温度和相变响应速率的影响规律。结果表明,P(NIPA-co-SA)水凝胶具有对温度敏感的响应特性,其低临界溶解温度(LCST)可达到75℃。NaCl水溶液浓度不影响产物的LCST,且随着反应中NaCl水溶液浓度的提高,水凝胶表面逐渐出现不连续的浅而封闭的小孔到互相贯穿的开孔,水凝胶相变响应速率在一定范围内逐渐提高,具有快速响应特性。 相似文献
4.
N-异丙基丙烯酰胺共聚物的温敏性 总被引:12,自引:0,他引:12
采用自由基水溶液聚合方法制备出了N-异丙基丙烯酰胺(N IPA)温敏共聚物P(AM-N IPA);首次在P(AM-N IPA)结构中引入丙烯酸钠(N aAA)单体结构单元,合成了离子型共聚物P(AM-N IPA-N aAA);考察了共聚物P(AM-N IPA)和P(AM-N IPA-N aAA)溶液温敏性的影响因素;分别采用荧光光谱分析法以及乌氏黏度计稀释法对共聚物溶液温敏机理进行了研究。结果表明,不同共聚单体的配比以及单体含量对共聚物溶液低临界溶解温度(LCST)均有显著影响;当温度高于共聚物低临界溶解温度时,共聚物分子链上的疏水基团的缔合作用增强,导致疏水聚集结构的形成,聚合物分子链发生去溶剂化作用,在共聚物稀溶液中表现为线团收缩,在共聚物亚浓溶液中表现为共聚物分子间聚集发生相分离。 相似文献
5.
6.
7.
8.
以N-异丙基丙烯酰胺(NIPAM)、甲基丙烯酸羟乙酯(HEMA)、丙烯酰胺(AM)、丙烯酸(AA)为原料,采用水溶液自由基聚合法制备了N-异丙基丙烯酰胺基温敏水溶性共聚物P(NIPAM-HEMA-AM)和P(NIPAM-HEMA-AM-NaAA)。研究了无机盐及聚合物结构对共聚物低临界溶解温度(LCST)的影响,考察了共聚物浓度、盐浓度、表面活性剂浓度对共聚物溶液流变性能特别是粘温特性的影响。结果显示,随着盐浓度的增加,共聚物溶液的LCST呈下降趋势。共聚物浓度较高时,在LCST附近表现出显著的升温增稠性。在P(NIPAM-HEMA-AM-NaAA)溶液中加入NaCl后溶液黏度增加,升温增稠效应明显。 相似文献
9.
利用溴代—接枝两步法将N-异丙基丙烯酰胺(NIPAAm)接枝聚合到纤维素纳米微晶(CNCs)表面,制备得到PNIPAAm改性的CNCs(P-CNCs),并将该P-CNCs分散于海藻酸钠(SA)基体中,得到复合水凝胶薄膜。对改性P-CNCs进行了结构和性能的表征,并研究了P-CNCs的温度响应特性对复合水凝胶薄膜分子透过性能影响。结果表明,改性P-CNCs保持了棒状结构但相比于CNCs直径变大,晶型保持不变但是结晶度降低。当环境温度高于低临界转变温度(LCST)时,P-CNCs悬浮液的透光率增大。添加P-CNCs制备的复合水凝胶薄膜,其热稳定性相比与其他水凝胶薄膜有所提高。当环境温度≥LCST时,添加P-CNCs的复合水凝胶薄膜的水蒸气透过性相比环境温度25℃时明显提高,300 min后水蒸气透过量相比提高了17%;而相比于添加CNCs的水凝胶薄膜,其相同时间下的水蒸气透过量提高了28.6%。亚甲基蓝分子透过性实验表明,在环境温度≥LCST的条件下,添加P-CNCs的复合水凝胶薄膜其分子透过速度要显著大于添加未改性CNCs的水凝胶薄膜,且分子透过速度随着P-CNCs添加量的增大而增大。 相似文献
11.
温度敏感性高分子聚(N-异丙基丙烯酰胺)(PNIPAAm)在水溶液中有较低临界溶解温度(LCST)。文中采用两种新型温度敏感性单体甲基四氢呋喃丙烯酰胺(THFAA)和甲基四氢呋喃甲基丙烯烯酰胺(THFMA),均聚合成了亲水性较好且其LCST高于PNIPAAm的两种聚合物。用THFAA,THFMA与PNIPAAm进行自由基共聚合,研究了共聚物的组成对共聚物较低临界溶解温度的影响。结果表明,两种温度敏感性单体共聚能有效地改变共聚物的LCST,通过改变聚合时两种单体的摩尔配比制备共聚物P(NIPAAm-co-THFAA)及P(NIPAAm-co-THFMA),可以实现LCST的可控调节。 相似文献
12.
选用具有优良温敏性单体N-异丙基丙烯酰胺(NIPA)和具有良好生物相容性及生物可降解性的p H敏感性天然高分子壳聚糖(CS)为基本原料,采用辐射法合成了PNIPA/CS智能水凝胶,用红外光谱分析了水凝胶的结构,并测定了水凝胶的溶胀动力学、退溶胀动力学和平衡溶胀率,研究了CS含量对凝胶性能的影响。结果表明,CS分子上的C3—OH和/或C6—OH和PNIPA发生了接枝反应,PNIPA/CS水凝胶的溶胀率随着CS含量的增大而逐渐减小。CS含量为20%的水凝胶其溶胀过程主要由链段的松弛来控制,该水凝胶的平均失水率约为94%,其较低温临界温度(LCST)约为37℃。 相似文献
13.
利用透射电镜、X射线光电子能谱、动态激光光散射和荧光光谱技术对Eu(Ⅲ)与聚N-异丙基丙烯酰胺(PNIPAM)接枝核壳纳米微球PNIPAM-g-P(NIPAM-co-St)(PNNS)的相互作用进行了研究.结果表明:Eu(Ⅲ)和热敏性的核壳纳米微球PNNS有显著的相互作用.其一,Eu(Ⅲ)可与PNNS中酰胺基团上的氧原子配位形成微球配合物Eu(Ⅲ)-PNNS;其二,Eu(Ⅲ)-PNNS微球配合物兼具热敏性;其三,该配合物在614 nm处的荧光强度较Eu(Ⅲ)增大了33倍,Eu(Ⅲ)与PNNS之间能量传递达到55%. 相似文献
14.
15.
利用X射线光电子能谱、红外光谱、紫外光谱和荧光光谱对Eu(Ⅲ)与聚N-异丙基丙烯酰胺(PNIPAM)的相互作用进行了研究.结果表明,Eu(Ⅲ)和PNIPAM有相互作用:①Eu(Ⅲ)可与PNIPAM中酰胺基团配位形成配合物PNIPAM-Eu(Ⅲ);②PNIPAM-Eu(Ⅲ)配合物兼具热敏性;③Eu(Ⅲ)与PNIPAM之间存在能量传递,当Eu(Ⅲ)含量为0.8w%时荧光强度最大. 相似文献
16.
在Fe3O4纳米粒子表面聚合包覆温敏性聚N-异丙基丙烯酰胺(PNIPAM)及其与聚苯乙烯(PS)、聚α-甲基丙烯酸(PMAA)的共聚物,制备表面不同亲水/疏水性质的双重磁响应温敏复合微球。利用透射电镜(TEM)、红外光谱(FT-IR)及Zeta粒度仪(DLS)等对复合微球进行了表征。结果表明,复合微球呈现核壳结构,粒径约为150nm~300nm;在复合微球温敏聚合物中引入亲水/疏水链段可以有效调节其最低临界溶解温度(LSCT),随着温敏聚合物亲水性的提高,微球LSCT向高温移动,且该微球具有良好的双重磁响应特性(磁靶向响应性和磁热响应性)。 相似文献
17.
18.
制备了两种糖基引发剂(AcCDBr和AcG-lABr),以CuBr/三-(N,N-二甲基氨基乙基)胺(Me6TREN)为催化体系,应用原子转移自由基聚合方法,在60℃下引发N-异丙基丙烯酰胺聚合,脱去乙酰基保护后得到末端分别带有β-环糊精和2-氨基葡萄糖基团的线形聚(N-异丙基丙烯酰胺)(CD-PAM和GlA-PAM)。对产物的结构进行了表征,凝胶渗透色谱(GPC)测得聚合物分子量分布较窄(PDI=1.12~1.20)。采用紫外-可见吸收光谱仪(UV-Vis)和示差扫描量热仪(DSC)对聚合物水溶液的相转变行为进行了测试,结果表明末端引入糖类结构使得PNIPAM的最低临界溶解温度(LCST)升高,并随着分子量的增大而降低,而且相同聚合度的GlA-PAM的LCST比CD-PAM的高3.7℃左右。 相似文献
19.
利用N-异丙基丙烯酰胺(NIPA)以及N-乙基丙烯酰胺(EA)两种单体合成了温敏型线性共聚物P(NIPA-co-EA),并用核磁共振氢谱、红外光谱以及凝胶渗透色谱(GPC)对该聚合物的结构进行了表征。采用浊度观察法和分光光度法两种方法分别对聚合物的LCST值进行了测试研究,探讨了通过调节两种单体的组分比例来调控体系的LCST值,并讨论了外添加剂NaCl以及BSA对线性聚合物P(NIPA-co-EA)LCST的影响。结果表明,随着EA单体摩尔配比的增大,对应共聚物的LCST值也相应增大,且在32~41.6℃之间可调。向P(NIPA-co-EA)水溶液中加入NaCl,当NaCl的量由0.9%(质量分数)增加到2%(质量分数)时,共聚物的LCST值从34.3℃降为31.6℃;加入BSA,线性共聚物的LCST随BSA浓度的增加而增加,且当EA10水溶液中加入20mg/mLBSA时,线性共聚物P(NIPA-co-EA)的LCST可高达38.9℃。 相似文献
20.
以N-异丙基丙烯酰胺(NIPA)为聚合单体,分别采用连续和间歇方式无皂乳液聚合法制备了单分散性良好且粒径可精确控制的PNIPA纳米凝胶。用原子力显微镜(AFM)和透射电镜(TEM)等方法对纳米凝胶的结构、形貌和粒径及其分布进行了表征,用分子力学模拟法研究了纳米凝胶的分子链发生体积相转变前后分子构象的变化。结果表明,PNI-PA纳米凝胶的粒径随交联剂和乳化剂含量的增加而逐渐减小,连续式制备的PNIPA纳米凝胶比间歇式纳米凝胶的平均粒径小,PNIPA纳米凝胶的较低临界溶解温度(LCST)在32℃左右,PNIPA纳米凝胶分子链在LCST以上严重卷曲,在纳米凝胶分子链中存在很强的非键作用力。 相似文献