首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fretting phenomenon was investigated experimentally in contacts between coated and uncoated steel rod and ball specimens generating a circular Hertzian contact. A fretting wear test rig equipped with a video camera was used to observe the effects of fretting on coated steel surfaces in both grease-lubricated and unlubricated environments. Tungsten carbide reinforced amorphous hydrocarbon (WC/a-C:H) and chromium nitride (Cr2N) coatings were tested and compared. Fretting wear volumes and surface profiles are presented for both grease-lubricated and unlubricated conditions. Videos of a coated ball fretting against a transparent sapphire flat were recorded and screen captures are presented. The role of normal load, lubrication, frequency, and amplitude of motion on the fretting wear of coatings is discussed. The lubricant released from the grease was observed to flow through channels in the stick zone of the fretting contacts. Both coatings were found to reduce fretting wear. WC/a-C:H was more effective at reducing wear under unlubricated conditions. WC/a-C:H decreased fretting wear more than Cr2N when delamination was avoided in grease-lubricated contacts.  相似文献   

2.
In this study, an effort was made to control the friction and wear behavior of silicon carbide (SiC) and silicon nitride (Si3N4) ceramics using an ultrasonic nanocrystalline surface modification (UNSM) technique. The friction and wear behavior of the ceramic specimens was investigated using a ball-on-disk tribotester under dry conditions against two different Si3N4 and bearing steel (SUJ2) balls. The experimental test results revealed the possibility of controlling the friction and wear behavior of ceramics, where the friction coefficient and wear resistance of the specimens were improved by the UNSM technique. The hardness of the specimens also increased after UNSM treatment, but it decreased abruptly with increasing depth from the very top surface. Microscratch tests showed that the critical load of the specimens was improved by the UNSM technique. In addition, Raman spectra results revealed that no additional phase was detected after UNSM treatment, but the intensity decreased after UNSM treatment. Hence, the UNSM technique ensures stronger ceramics and enables better friction and wear behavior than available conventional sintered ceramics.  相似文献   

3.
《Wear》1997,210(1-2):27-38
The wear and friction behaviour of silicon nitride against bearing steel was investigated under lubricated and dry fretting conditions as a function of amplitude and test duration. Tests were performed on a high frequency fretting tester. Silicon nitride bearing balls were used as the upper oscillating specimens while the lower stationary flats were standard specimens of bearing steel. Amplitudes in the intermediate 5 to 50 μm range and a test duration from 10 to 360 min were studied. In lubricated conditions a commercial lubricant. ISO VG 220, was used. Light microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger spectroscopy (AES) and transmission electron microscopy (TEM) were employed to determine the wear mechanisms.

Under lubricated conditions transition from high to low wear volumes was recognised with increasing amplitude. At lower amplitudes and in the early stage of fretting tests at moderate amplitudes, mechanical wear dominated. Cracks on the stick-slip boundary and spalling of a thin tribolayer was observed. Under these conditions the highest wear in lubricated fretting was obtained. In the final stage of fretting tests at moderate amplitudes, and from the beginning at higher amplitude, tribochemical wear is suggested as the dominant wear form. A 0.2 μm thick tribolayer was observed on the contact, containing inclusions with different Fe and Si contents. A very high concentration of carbon, formed by oil degradation, was also determined in this layer, confirming the critical influence of oil on the wear behaviour.

Quite a different wear mechanism is proposed for dry fretting conditions. Results of AES analysis showed a layer an order of magnitude thicker than in lubricated fretting, also having a remarkably different chemical composition. TEM analysis confirmed that the reaction layer consisted of a silica-rich amorphous phase containing small inclusions of Fe2O3 and Fe3O4. In contrast to lubricated conditions, where the layer created was ductile, in the case of dry fretting the layer was brittle. The continuous process of forming and spalling the brittle tribolayer caused much higher wear rates and wear losses than under lubricated fretting conditions. No transition in wear behaviour was observed as was the case in lubricated fretting.  相似文献   


4.
《Wear》1986,110(1):75-81
Oxygen is shown to be a factor in the wear of silicon nitride against cast iron and steel. Pin-on-disk tests show that the wear of silicon nitride against cast iron and steel is reduced when the oxygen concentration of the atmosphere is reduced. A relationship between pin-on-disk and machining tests is shown. Machining data are presented to indicate how the wear of the silicon nitride tool is reduced when the oxygen concentration at the toolworkpiece interface is reduced with a stream of nitrogen.  相似文献   

5.
Surface mechanical attrition treatment (SMAT) was carried out on Ti–6Al–4V. Fretting wear tests were conducted using two counterbody materials (alumina and steel). SMAT resulted in surface nanocrystallization. Due to high hardness, low tangential force coefficient (TFC) and more TiO2 layer, fretting wear resistance of SMAT treated samples was higher than that of the untreated samples. TFC values obtained with alumina counterbody were higher than those obtained with steel counterbody. The fretting wear resistance of untreated and treated samples fretted against alumina was lower than that of the samples fretted against steel due to tribochemical reactions at the contact zone.  相似文献   

6.
A series of tests has been conducted to evaluate the suitability of silicon nitride as a bearing material for rolling contact applications. The ability of silicon nitride to be lubricated by some conventional lubricants was found to be satisfactory. This was determined by wettability studies, lubricant film thickness and traction coefficient measurements on the optical EHD rig and friction coefficient measurements by the pin-on-disk method. The abrasive wear coefficient, measured on a lopping machine using 600 grit SiC abrasive, was found to be high compared to other ceramics. It was also dependent on the composition of the silicon nitride. Comparative rolling contact fatigue tests on steel and silicon nitride flat washers were conducted using steel rollers and balls. A high wear rate leading to grooving in the rolling track on silicon nitride was observed. The spalling resistance of silicon nitride was found to be higher than that of steel under the test conditions used. Surface interactions in the Si3N4-M50 steel contacts, detrimental to the life of the steel rolling elements, were recognized. Attempts were made to reduce the severity of these interactions and prolong the life of bearings containing ceramic elements.  相似文献   

7.
Cylindrical Al-Al3Ni eutectic alloy wear pins (10 mm in diameter) were slid against a polished steel surface in a pin-on-disc rotating machine under unlubricated conditions with bearing pressures of 6–60 kPa and a constant sliding speed of 70 m min?1. Metallographic changes in the subsurface region of contact were examined by optical microscopy and microhardness measurements. In the bearing pressure range investigated the alloy exhibited “mild” wear in two linear regions identified as pure “oxidative” wear at low bearing pressures and oxidative with superimposed “metallic” wear at higher bearing pressures. Plastic deformation and fragmentation of the Al3Ni phase occurred under all bearing pressures. However, in composites prepared by unidirectional solidification containing large Al3Ni particles fragmentation was insignificant. In all other specimens the size of the fragmented particles in the subsurface region of contact was about 5 μm irrespective of the bearing pressure.  相似文献   

8.
Wear of steel (AISI M-50 and AISI 52100) bearing balls in lubricated rolling contact with ground and ground-and-lapped silicon nitride rods was studied using a ball-on-rod rolling-contact-fatigue (RCF) tester. The steel balls suffered significant wear in rolling contact with the as-ground (Ra = 0.18 μm) silicon nitride rods. The wear volume loss was approximately linear with the rolling distance. The wear rate increased linearly with the initial Hertzian contact stress in the range, 3–6.5 GPa. Examination of the wear tracks in a scanning electron microscope revealed surface features that suggested a wear mechanism that involved plastic deformation of the steel surface, squeezing of the metal symmetrically outward and rupture of the metal layers at the edges. The steel balls suffered negligible wear but failed by spalling in rolling contact with the ground-and-lapped silicon nitride rods (Ra = 0.08 μm) at an initial contact stress of 5.5 GPa. The as-ground silicon nitride rods exhibited neither wear nor spalling in the RCF tests, while the ground-and-lapped silicon nitride rods showed no wear but occasional spalling failure.  相似文献   

9.
Fretting damage was one of the most important reasons for the failure of the railway axle. Fretting wear (tangential fretting mode) tests of a railway axle steel (LZ50 steel) flats against 52 100 steel balls were carried out under different normal loads and displacement amplitudes on a hydraulic fretting wear rig. Dynamic analyses in combination with microscopic examinations have been performed. The experimental results showed that the fretting regimes of the LZ50 steel were strongly dependent upon the imposed normal loads and displacement amplitudes. The Ft/Fn curves exhibited different variation trends in different fretting running regimes. The fretting scars presented slight damage in partial slip regime. In mixed fretting regime, the trace of the plowing and plastic deformation flow can be observed on the fretting scars. The wear mechanism during this regime was the combination of the abrasive wear, oxidative wear and delamination accompanied with obvious plastic deformation. The detachment of particles and plowing traces were the main phenomena in slip regime. And, thicker debris layer covered the contact zone of the scar. The severe degradation in slip regime presented the main wear mechanisms of abrasive wear, oxidative wear and delamination.  相似文献   

10.
The influence of sliding speed on the unlubricated tribological behaviors of silicon nitride–boron nitride (Si3N4-hBN) composites was investigated with two modes in air by a pin-on-disc tribometer. Using the upper disc–on–bottom pin test mode, as the sliding speed increased, the friction coefficient of the sliding pairs showed an upward trend; for example, from 0.18 at the sliding speed of 0.40 m/s to 0.54 at the sliding speed of 1.31 m/s for the Si3N4/Si3N4–20% hBN pair. The surface analysis indicated that a tribochemical film consisting of SiO2 and H3BO3 formed on the wear surfaces of the Si3N4/Si3N4–20% hBN sliding pair at sliding speeds of 0.40 and 0.66 m/s. Moreover, the formation of this film lubricated the wear surfaces. At the sliding speed of 1.31 m/s, no tribochemical film formed on the wear surfaces, most likely due to the increase in surface temperature. In the upper pin–on–bottom disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. The increase in sliding speed weakened the degree of abrasive wear, leading to a decrease in the friction coefficients.  相似文献   

11.
Tribological properties of TiO2 coatings synthesized by micro-arc oxidation (MAO) on the surface of TC4 titanium alloys were investigated at the fretting contact against 440C stainless steel in simulated body fluid (SBF). Fretting experiments were carried out by ball-on-flat contact at various loads for 1 h, with an amplitude of 100 μm and a frequency of 5 Hz. Results show that MAO TiO2 coatings presented good tribological properties with lower friction coefficient in SBF. Less wear volume was observed for MAO TiO2 coatings compared with that for TC4 alloy. At lower load, the wear mechanism of MAO TiO2 coatings was dominated to abrasive wear. With an increase of normal load, however, fretting corrosion increased due to chemical reactions with SBF, and therefore, fretting fatigue coexisting with abrasive wear became the predominant mode.  相似文献   

12.
Al6061 matrix composite reinforced with nickel coated silicon nitride particles were manufactured by liquid metallurgy route. Microstructure and tribological properties of both matrix alloy and developed composites have been evaluated. Dry sliding friction and wear tests were carried out using pin on disk type machine over a load range of 20-100 N and sliding velocities of range 0.31-1.57 m/s. Results revealed that, nickel coated silicon nitride particles are uniformly distributed through out the matrix alloy. Al6061-Ni-P-Si3N4 composite exhibited lower coefficient of friction and wear rate compared to matrix alloy. The coefficient of friction of both matrix alloy and developed composite decreased with increase in load up to 80 N. Beyond this, with further increase in the load, the coefficient of friction increased slightly. However, with increase in sliding velocity coefficient of friction of both matrix alloy and developed composite increases continuously. Wear rates of both matrix alloy and developed composites increased with increase in both load and sliding velocity. Worn surfaces and wear debris was examined using scanning electron microscopy (SEM) for possible wear mechanisms. Energy dispersive spectroscope (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) techniques were used to identify the oxides formed on the worn surfaces and wear debris.  相似文献   

13.
Unlubricated tribological behaviors of silicon nitride–boron nitride (Si 3 N 4 -hBN) composites were investigated with two test modes in air by using a pin-on-disc tribometer. Under upper-disc-on-bottom-pin test mode, the addition of hBN to Si 3 N 4 resulted in a significant decrease of the friction coefficient, from 0.54 for Si 3 N 4 against Si 3 N 4 to 0.19 for Si 3 N 4 -20% hBN against Si 3 N 4 . The surface analysis indicated that a tribochemical film consisting of SiO2 and H 3 BO 3 was formed on the wear surfaces. The formation of tribochemical film might be attributed to the embedment of wear debris into the spalling pits on the wear surfaces of Si 3 N 4 -hBN specimen. The wear debris reacted with moisture in air, and the resultant tribochemical film lubricated the wear surfaces. Under upper-pin-on-bottom-disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. A slight decrease of the friction coefficient, from 0.85 for Si 3 N 4 /Si 3 N 4 to 0.56 for Si 3 N 4 /Si 3 N 4 -30% hBN, was obtained, which might be attributed to the layered structure of hBN.  相似文献   

14.
Small amplitude (50 μm) reciprocating wear of hydrogen-containing diamond-like carbon (DLC) films of different compositions has been examined against silicon nitride and polymethyl-methacrylate (PMMA) counter-surfaces, and compared with the performance of an uncoated steel substrate. Three films were studied: a DLC film of conventional composition, a fluorine-containing DLC film (F-DLC), and silicon-containing DLC film. The films were deposited on steel substrates from plasmas of organic precursor gases using the Plasma Immersion Ion Implantation and Deposition (PIIID) process, which allows for the non-line-of-sight deposition of films with tailored compositions. The amplitude of the resistive frictional force during the reciprocating wear experiments was monitored in situ, and the magnitude of film damage due to wear was evaluated using optical microscopy, optical profilometry, and atomic force microscopy. Wear debris was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In terms of friction, the DLC and silicon-containing DLC films performed exceptionally well, showing friction coefficients less than 0.1 for both PMMA and silicon nitride counter-surfaces. DLC and silicon-containing DLC films also showed significant reductions in transfer of PMMA compared with the uncoated steel. The softer F-DLC film performed similarly well against PMMA, but against silicon nitride, friction displayed nearly periodic variations indicative of cyclic adhesion and release of worn film material during the wear process. The results demonstrate that the PIIID films achieve the well-known advantageous performance of other DLC films, and furthermore that the film performance can be significantly affected by the addition of dopants. In addition to the well-established reduction of friction and wear that DLC films generally provide, we show here that another property, low adhesiveness with PMMA, is another significant benefit in the use of DLC films.  相似文献   

15.
Friction and wear on PbS(100) surfaces have been investigated on the atomic scale as a function of temperature with atomic force microscopy. At room temperature and above, the PbS(100) surface exhibited low friction (μ < 0.05) in contact with a silicon nitride probe tip, provided that interfacial wear was not encountered. In the absence of wear, friction increased exponentially with decreasing temperature, transitioning to an athermal behavior near 200 K. An Arrhenius analysis of the temperature dependence of friction yielded an activation energy ∆E = 0.32 ± 0.02 eV for the sliding contact of a silicon nitride tip on PbS(100).  相似文献   

16.
The frictional behavior of certain nitrogen-containing ceramics, such as silicon nitride, alpha sialons, and beta sialons as journal materials were studied in conformal contact with a tin-coated Al-Si alloy (Al-Si/Sn), forged 1141 steel and a cast aluminum matrix composite with silicon carbide reinforcement (cast MMC) as bearing materials while lubricated with SAE WW30. A case-hardened 1016 steel was also tested with the Al-Si/Sn and cast MMC bearings under the same conditions. The friction values of the ceramic and the steel journal wear pairs were compared and their frictional behaviors were evaluated.

Silicon nitride and one of the beta sialons exhibited higher load-supporting capacities than the others when they were in contact with the 1141 steel bearings. The journal surface roughness was found to be very important when the journals were in contact with the Al-Si/Sn bearings. The frictional behavior of the ceramics and cast MMC pairs and the steel and cast MMC pairs were controlled by different wear mechanisms, namely for the former, hard particle pull-out and matrix plowing, and for the latter, iron transfer from the journal to the cast MMC bearing surface.  相似文献   

17.
The effects of applying a bonded MoS2 solid lubricant to a 1050 steel substrate were investigated using a torsional fretting wear apparatus. Tests were conducted under a normal load of 50 N with angular displacement amplitudes ranging from 0.1 to 5°. Wear scars were examined using scanning electron microscopy, energy-dispersive X-ray spectrometry, optical microscopy, and surface profilometry. The MoS2 coating exhibited different torsional fretting regimes than those of the substrate. Fretting regimes of the coating were primarily in the partial slip regime (PSR) and the slip regime (SR) with no mixed fretting regime. The width of the PSR narrowed. Due to the lubricating effects of the coating, the friction torque was consistently lower than that of the substrate. The damage to the coating in the PSR was very slight, and its granular structure remained even after 1,000 cycles. The damage mechanism to the SR coating was a combination of abrasive wear, oxidative wear, and delamination. The MoS2 coating had potential to alleviate torsional fretting wear.  相似文献   

18.
The fretting wear behavior of micro-arc oxidation (MAO) coating of Al2O3 on an aluminum alloy 2024Al flat against a 440C stainless steel ball was investigated in artificial rainwater, artificial seawater and distilled water by using a ball-on-flat configuration with 300 μm amplitude at room temperature for 1 h. The morphology of the wear scars were observed and analyzed using scanning electron microscopy; the 3D-morphology and wear volume-loss were determined using a non-contact optical profilometer. Potentiodynamic anodic polarization was used to measure the corrosion behavior of the MAO coating before and after the corrosion wear test. The influences of the load, frequency and aqueous medium on the friction coefficient and wear volume-loss of the coatings were also analyzed. Results show that the friction coefficient decreases generally with an increase of the frequency in the three aqueous solutions; whereas it presents different variation trends as the load increased. In addition, aqueous environment does significantly influence the friction coefficient, the friction coefficient was the largest when fretting occurred in distilled water, smaller when fretting occurred in rainwater, and the smallest when fretting occurred in seawater. Particularly the remarkable antifriction effect of the seawater is of note. The wear-loss of the MAO coating in the distilled water is the largest at low frequency; however, it increases rapidly in rainwater and seawater at high frequency due to the corrosion effect of Cl? ion as well as its accelerating effect to the wear process, and results in larger wear-loss than that in distilled water, which implies a positive synergism between corrosion and wear.  相似文献   

19.
This article presents a method for optimizing the deep cryogenic treatment (DCT) process parameters for 100Cr6 bearing steel, based on the Taguchi method with Grey relational analysis. The DCT parameters considered for the optimization included the cooling rate, soaking temperature, soaking time, and tempering temperature, with the quality targets of dimensional stability, wear resistance, and hardness. As per the Grey-Taguchi technique, nine experimental trials based on the L9 (34) orthogonal array were conducted. The optimum parameters for 100Cr6 bearing steel were arrived at based on Grey relational analysis. Analysis of variance (ANOVA) was performed and soaking temperature was identified as the most influential factor in deep cryogenic treatment of 100Cr6 bearing steel. The improvement in dimensional stability, wear resistance, and hardness of the deep cryotreated samples under optimized treatment conditions was 13.77, 49.02, and 19.35%, respectively. A microstructural examination was carried out to identify the possible mechanism of cryogenic treatment in improving the properties of the 100Cr6 bearing steel. A confirmation test was subsequently conducted to validate the test results.  相似文献   

20.
Hot pressed silicon nitride that was exposed to high (90%) and low (32%) relative humidity was examined in ball-on-disc geometry against cemented carbide ball at various normal loads. The study indicated that Si3N4 tested at high R.H. gave less specific wear rate compared with Si3N4 at low R.H. The friction coefficient of Si3N4−WC-6% Co tribopairs was found in the range of 0.32–0.39 and 0.05–0.17 at low humidity and high humidity respectively. It is suggested that adsorbed moisture markedly affected the wear and friction properties of silicon nitride.Following the tests, SEM was used to elucidate the wear mechanism and particularly to delineate the effects of relative humidity on the wear and friction. SEM micrographs showed that the main wear mechanism at low relative humidity (32%) was caused by mechanical wear including abrasive grooves, large holes and polishing, whereas at high relative humidity (90%) the main mechanism was highly influenced by a tribochemical reaction related to the moisture adsorption from the environment. It is concluded that the removal of lubricious tribolayer was occurred by delamination induced crack propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号