首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用低温(430°C)盐浴对304奥氏体不锈钢进行氮化处理,研究了氮化时间对渗氮层组织、显微硬度及耐蚀性的影响。分别用X射线衍射仪(XRD)、表面显微硬度计、光学显微镜分析了渗氮层的相组成、显微硬度、截面形貌和厚度。结果表明,304不锈钢表面的渗氮层厚度和显微硬度都随处理时间的延长而增大。氮化处理1h得到的渗氮层由单一的S相组成。经盐浴渗氮处理的304不锈钢,其耐Cl-点蚀性能得到改善,430°C下氮化4h得到的渗氮层耐蚀性能最好。  相似文献   

2.
在430℃下对304奥氏体不锈钢进行低温盐浴氮化处理,并用X射线衍射(XRD)、光学显微镜(OM)、能谱(EDS)、扫描电镜(SEM)和显微硬度计研究了氮化时间对渗氮层厚度、组织结构、显微硬度和耐冲刷腐蚀性能的影响.结果表明,渗氮层厚度和表面显微硬度均随渗氮时间的延长而增加.氮化时间为1h时,氮化层仅为单一的S相;氮化16h时,氮化层由CrN和S两相混合.氮化层中的CrN随渗氮时间延长而增多,氮化40 h时氮化层析出大量CrN.盐浴渗氮处理后,304不锈钢的耐冲刷腐蚀性能得到了一定的改善.在430℃氮化16h,其耐蚀性能最好.随着渗氮时间的继续增加,304不锈钢的耐冲刷腐蚀性能降低.  相似文献   

3.
[目的]对铝合金进行表面处理可提高其硬度和耐磨性,拓宽铝合金材料在机械零件方面的应用。[方法]采用电刷镀技术在1060铝合金表面制备Ni镀层,再通过电接触强化技术对Ni镀层进行改性。采用扫描电子显微镜和维氏硬度计考察了Ni镀层电接触强化前后的微观组织和显微硬度。通过摩擦磨损试验对比了1016铝合金及Ni镀层电接触强化前后的耐磨性。[结果]经电接触强化后,Ni镀层内部的裂纹及孔洞类缺陷减少,晶粒间隙减小,致密性提高,显微硬度增大到524.4~560.3 HV0.1范围内。1016铝合金在摩擦磨损试验后存在较深的犁沟和剥落,耐磨性较差。Ni镀层的耐磨性优于1016铝合金,但在摩擦过程中会发生剥落。经电接触强化的Ni镀层在摩擦过程中摩擦因数平稳,表面只是轻微擦伤,耐磨性最佳。[结论]结合电刷镀镍和电接触强化技术可显著提高铝合金的表面性能。  相似文献   

4.
本文通过对CFRP试件端部加强片进行复合改性研究,分别对试样进行微观结构和显微硬度试验和分析,研究了氮化处理和氮化+后氧化处理在提高试件力学性能方面的作用。研究结果表明,经过氮化处理和氮化+后氧化处理,试样均能获得由外部化合物层和内部扩散层构成的表面改性层。氮化物层主要由铁氮化合物和铬氮化合物组成,氧化物层的主要成分为铁氧混合物,两种成分含量的多少取决于后氧化处理过程的温度。离子氮化与氧化复合工艺改善了试样的表面改性层,显著提高了试样表面的显微硬度。  相似文献   

5.
采用热压成型工艺制备了插层改性膨润土掺杂的聚合物基摩擦材料,通过对比改性前后的膨润土掺杂的数据结果,进而探索插层改性膨润土的摩擦材料磨损表面的形态、物理力学性能、摩擦磨损性能的变化规律。结果表明:插层改性之后,膨润土的形貌由不规则的颗粒状变成片层状结构,晶面间距比原来增大了0.089 22 nm,表明季铵盐十六烷基三甲基溴化铵已经成功地插层进入膨润土层间。与未改性的膨润土相比,季铵盐改性膨润土增强的摩擦材料磨损表面更为平整,这与表面生成的摩擦膜密切相关,其硬度从未改性膨润土掺杂摩擦材料的85~95降低到了80~90,冲击强度明显提高,摩擦系数较高,磨损率较低,尤其是当温度为350℃时,季铵盐改性膨润土掺杂的摩擦材料其摩擦系数从原来的0.15增加至0.23,而磨损率从原来的2.25×10–7 cm^3/(N·m)降低至0.97×10–7 cm^3/(N·m),综合性能变好。  相似文献   

6.
为探究“金属-超高分子量聚乙烯(PE-UHMW)”承载组合的人工关节在体外的摩擦学性能,根据ASTM F732–2011标准,采用多种医用金属(316L不锈钢、钴基合金Stellite 21-S21和Stellite 22-S22)与PE-UHMW进行配副,利用“销-盘”摩擦试验机在牛血清润滑条件下进行了2百万次循环(Mc)磨损试验。同时,探讨了金属表面硬度与初始粗糙度对PE-UHMW磨损的潜在影响。PE-UHMW与S21,S22和316L配副的平均磨损因子分别为(1.33±0.19)×10–6,(1.36±0.16)×10–6和(1.19±0.18)×10–6 mm3/(N·m)。通过统计学对比分析,发现初始表面粗糙度与磨损率呈正相关系,而表面硬度的影响并不显著。PE-UHMW配副三种金属均存在多向划痕、鱼鳞状磨痕和磨屑粘着现象,这表明磨粒磨损、粘着磨损和三体磨损并存。金属表面仅发现少许划痕,未形成聚合物转移层。此外,从长期来看,钴基合金的硬度较大,表面粗糙度变化并不显著,有助于稳定聚合物的磨损。  相似文献   

7.
为探究“金属-超高分子量聚乙烯(PE-UHMW)”承载组合的人工关节在体外的摩擦学性能,根据ASTM F732–2011标准,采用多种医用金属(316L不锈钢、钴基合金Stellite 21-S21和Stellite 22-S22)与PE-UHMW进行配副,利用“销-盘”摩擦试验机在牛血清润滑条件下进行了2百万次循环(Mc)磨损试验。同时,探讨了金属表面硬度与初始粗糙度对PE-UHMW磨损的潜在影响。PE-UHMW与S21,S22和316L配副的平均磨损因子分别为(1.33±0.19)×10–6,(1.36±0.16)×10–6和(1.19±0.18)×10–6 mm3/(N·m)。通过统计学对比分析,发现初始表面粗糙度与磨损率呈正相关系,而表面硬度的影响并不显著。PE-UHMW配副三种金属均存在多向划痕、鱼鳞状磨痕和磨屑粘着现象,这表明磨粒磨损、粘着磨损和三体磨损并存。金属表面仅发现少许划痕,未形成聚合物转移层。此外,从长期来看,钴基合金的硬度较大,表面粗糙度变化并不显著,有助于稳定聚合物的磨损。  相似文献   

8.
利用强流脉冲电子束(HCPEB)HOPE-I型对40CrNiMo7钢实施表面改性。测试改性表面的显微硬度和摩擦磨损性能。结果表明,改性样品的表面显微硬度由原始313 HK增加到1114 HK,耐磨性对应提高约36%。  相似文献   

9.
采用等离子体增强化学气相沉积技术(PECVD)在316L不锈钢上制备类金刚石(DLC)涂层,系统地研究了所制备类金刚石涂层的表面形貌与结构、不同载荷下的摩擦磨损行为以及NaCl溶液(3.5 wt%)中不同腐蚀时间下的腐蚀行为。研究结果表明:制备的DLC涂层是由sp3键和sp2键杂化形成的非晶碳结构,其中sp2-C含量大于sp3-C,具有典型的类金刚石碳特征;DLC涂层结构致密,表面平滑,粗糙度仅为Ra=12.1 nm,能够与316L不锈钢基体结合紧密;DLC涂层的接触角为59.44°,说明涂层表现出一定的润湿性;摩擦磨损测试结果表明DLC涂层具有良好的润滑效果,摩擦系数能低至0.07~0.16,磨损率低至(3.85~6.71)×10-7 mm3/(N·m);电化学测试得到DLC涂层自腐蚀电流密度为6.72×10-6 A·cm-2,阻抗模值高达7.05×104Ω·cm-2...  相似文献   

10.
铝合金喷涂Ni60涂层的耐磨性研究   总被引:1,自引:0,他引:1  
采用氧-乙炔火焰喷涂技术在ZL109铝合金表面制备Ni60涂层。用显微硬度计测定涂层的显微硬度,用摩擦磨损实验机研究涂层的耐磨性,用扫描电子显微镜(SEM)观察磨损形貌并分析磨损机制。结果表明:ZL109铝合金经过火焰喷涂Ni60涂层后,基体的显微硬度明显提高,并呈现出很好的耐磨性及平稳较低的摩擦因数;涂层的磨损机制以疲劳磨损为主。  相似文献   

11.
采用电子万能试验机、环-块式摩擦试验机和扫描电子显微镜等分析表征手段,考察了针状硅灰石与石墨(Gr)和Cr2O3并用对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响。结果表明,随着硅灰石含量的增加,PTFE/硅灰石复合材料的磨损率逐渐降低,而摩擦系数呈现出先降低后增加的趋势。在15%(质量分数,下同)硅灰石的基础上添加10%Gr时,复合材料的磨损率降低到0.22×10-5 mm3/(N·m),摩擦系数略有增大。进一步添加1%Cr2O3代替相应含量的Gr时,PTFE/硅灰石/Gr/Cr2O3复合材料表现出最低的磨损率,仅有0.13×10-5 mm3/(N·m),对应的摩擦系数为0.25。磨损机理分析表明:适量硅灰石在摩擦过程中起到了较好的支撑载荷作用,阻止了对偶上微凸体对摩擦表面的嵌入;在此基础上继续添加9%Gr和1%Cr2O3时,对偶上形成了非常致密完整、薄且均匀的转移膜,表现为轻微的磨粒磨损特征。  相似文献   

12.
路琴  张静  何春霞 《中国塑料》2008,22(4):21-24
利用摩擦磨损试验机考察了填料含量及载荷对纳米氮化钛(TiN)填充聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察分析磨损表面形貌,探讨了磨损机理。结果表明,纳米TiN可以提高PTFE的硬度和耐磨性,当纳米TiN质量分数为7%时,PTFE纳米TiN复合材料的磨损量最小;随载荷的增大,PTFE/TiN复合材料的磨损量增加。PTFE纳米TiN复合材料的摩擦因数比纯PTFE小。  相似文献   

13.
在衬套用W70钨-铜合金板表面电沉积镍-钨-硼合金镀层,并研究了镍-钨-硼合金镀层的结构、耐磨性及表面形貌。结果表明:镍和钨属于诱导共沉积。电沉积过程中,钨和硼进入镍的晶格中,能够抑制镍晶粒的生长,从而细化晶粒,大大提高了镍-钨-硼合金镀层的硬度和耐磨性。镍-钨-硼合金镀层呈现出小山状颗粒形貌,表面较为均匀、致密,属于Ni17W3面心立方结构,摩擦因数约为0.12,磨损率约为3.72×10-6 mm3·N-1·m-1。  相似文献   

14.
在以氨基磺酸镍为主盐、硼氢化钠为硼源的电解液中,采用恒流电镀法于铜基底表面制备了镍-硼合金镀层。采用相似的方法制备了纯镍镀层和镍-铁合金镀层作为对照。使用真空退火炉对镍-硼合金镀层进行热处理。采用X射线衍射仪、扫描电子显微镜对镀层的晶体结构和表面形貌进行了表征和分析,采用显微硬度计和摩擦磨损试验机对镀层的硬度和耐磨性进行了测试。通过扫描电子显微镜观察表面摩擦磨痕形貌,分析镀层摩擦磨损机制。结果表明:镍-硼合金镀层表面光亮平整,硬度可达7 000~8 000 MPa;经过300℃热处理后硬度可达到11 000MPa。镍-硼合金镀层的耐磨性比镀镍层和镍-铁合金镀层的有很大的改善。  相似文献   

15.
利用冷压烧结法制备了不同含量的聚四氟乙烯/纳米碳化硅(PTFE/纳米SiC)复合材料。采用MM-200型摩擦磨损试验机在干摩擦条件下考察了纳米SiC含量及载荷对PTFE/纳米SiC复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了其磨损机理。结果表明,纳米SiC能够提高PTFE/纳米SiC复合材料的硬度和耐磨性,当纳米SiC质量分数为7%时,PTFE/纳米SiC复合材料的磨损量最小,摩擦系数也最小;随纳米SiC含量的增加,其摩擦系数有所增大;随着载荷的增大,PTFE/纳米SiC复合材料的磨损量增加。  相似文献   

16.
奥氏体不锈钢低温离子渗碳后的亮化处理   总被引:7,自引:0,他引:7  
对经过低温离子渗碳后的奥氏体不锈钢的表面进行了电化学亮化处理,并对亮化处理前后的硬化层的组织结构、厚度、硬度及耐蚀性能进行了比较.结果表明,电化学亮化处理能够去除离子渗碳后覆盖在不锈钢表面的黑膜,恢复不锈钢原有的颜色.电化学表面亮化处理后,不锈钢渗碳层的厚度略有减薄,硬度稍有降低,但耐蚀性能却较亮化处理前有较大的提高.  相似文献   

17.
《化工机械》2017,(6):626-632
对304奥氏体不锈钢进行了敏化试验与超声喷丸试验,并对其应力腐蚀性能进行研究。通过金相、微观硬度、慢应变速率拉神试验和SEM微观断口方法,分析敏化试验过程对304奥氏体不锈钢材料性能的影响。得出304奥氏体不锈钢在敏化试验后,材料晶间会析出大量碳化物且耐应力腐蚀性能下降的结论。慢应变速率拉伸试验中表现出塑性段缩短、断口沿晶界扩展、塑性大幅下降的现象。通过后续的超声喷丸处理可提升304奥氏体不锈钢的表面硬度,并使其抗应力腐蚀性能提高。试验证明了超声喷丸技术应用于材料表面可有效阻止晶间腐蚀及应力腐蚀裂纹扩展,且随着表面超声喷丸处理覆盖率的增大,材料抗应力腐蚀性能进一步提高。  相似文献   

18.
路琴 《中国塑料》2009,23(3):28-31
用摩擦磨损试验机对纳米碳化硅(SiC)及其与石墨、二硫化钼(MoS2)混合填充聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对磨时摩擦磨损性能进行了研究,用洛氏硬度计对PTFE及其复合材料的硬度进行了测量,用扫描电子显微镜对PTFE复合材料磨损表面进行了观察。结果表明,纳米SiC的加入能提高PTFE复合材料的硬度和耐磨性,纳米SiC与MoS2混合填充会使PTFE复合材料的耐磨性提高更多,特别是在载荷增大时其耐磨效果更好。纳米SiC填充PTFE复合材料的摩擦因数比纯PTFE大,且随载荷增加有所减小, MoS2、石墨的加入可降低PTFE的摩擦因数。  相似文献   

19.
研究了退火温度对磁控溅射AlCrNbSiTiV高熵合金氮化薄膜组织与性能的影响。通过扫描电镜、能谱仪、X射线衍射仪和纳米压痕仪考察了薄膜的形貌、元素含量、物相成分和显微硬度。通过干式切削304不锈钢,考察了镀膜TNMG160404R刀具的刀腹磨损和切削工件的表面粗糙度,比较了退火前后镀膜刀具的切削性能。结果表明:磁控溅射AlCrNbSiTiV高熵合金氮化薄膜的主要是面心立方晶相结构,具有良好的高温稳定性。退火温度为600℃时,薄膜显微硬度高,刀具磨损小,切削工件的表面粗糙度低。  相似文献   

20.
不锈钢化学镀的研究与应用现状   总被引:1,自引:0,他引:1  
不锈钢具有优良的耐蚀性,但是硬度和耐磨性偏低.不锈钢在磨损或者碰撞严重的环境下使用时.一般要经过表面处理,提高其表面硬度和耐磨性.本文论述了不锈钢化学镀的研究和应用现状,并对前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号