首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
障碍物对可燃气体泄漏扩散影响的数值模拟   总被引:1,自引:0,他引:1  
室内可燃气体泄漏容易引发危险事故,考虑障碍物对可燃气体泄漏扩散的影响,采用雷诺平均的N—S方程,k—ε湍流模型方程以及组分输运模型方程,通过改变泄漏速率、泄漏位置等参数对障碍物影响下可燃气体泄漏扩散进行了数值模拟。结果表明:障碍物存在阻碍了可燃气体的泄漏扩散,易使泄漏气体堆积,增大危险事故发生的可能性;不同泄漏速率下得到的浓度场分布相似;泄漏位置不同得到的危险区域不同,泄漏口与出口异侧、位置越低、距离障碍物距离越小,房间内发生危险事故的可能性越大。模拟结果可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

2.
可燃气体泄漏扩散影响因素的数值分析   总被引:2,自引:1,他引:1  
采用雷诺平均的N-S方程,浮力修正的k-ε湍流模型以及组分输运模型,通过对不同位置室内可燃气体泄漏扩散的数值计算,得到了不同位置泄漏后的扩散特性,并对风速影响下的计算结果进行分析.结果表明:不同位置泄漏扩散形成的危险区域不同,无外界风力影响下,泄漏口与出口异侧且位置越高,房间内形成的爆炸区域越小;在外界风速的影响下,天然气容易在房间局部堆积,泄漏口位于顺风侧距离出口越近,且风速越大,房间内天然气扩散的越快,危险区域越小,对室内燃气管道系统的设计具有参考价值.  相似文献   

3.
化学危险性气体泄漏扩散模拟及其影响因素   总被引:20,自引:0,他引:20  
分析了描述易燃易爆及有毒有害气体泄漏扩散过程的数学模型,包括Gaussian模型、Gaussian轨迹烟云模型、BM模型、Sutton模型及FEM3模型。重点介绍了目前广泛使用的Gaussian模型及Gaussian轨迹烟云模型。针对事故泄漏扩散过程的复杂性,详细讨论了气象条件及地形条件对危险性物质泄漏扩散过程的影响,此外还对不确定的选取进行了探讨。  相似文献   

4.
架空天然气管道泄漏扩散数值模拟   总被引:1,自引:3,他引:1  
针对天然气管道穿孔泄漏扩散问题,结合有限容积法,建立了天然气管道不同泄漏位置的CFD仿真模型,分别对天然气管道上部、下部、迎风侧及背风侧等4种工况的泄漏扩散进行了数值模拟。研究结果表明,下部泄漏比上部泄漏气体更贴近地面且不易扩散,且横向危险范围也比上部泄漏大30~70m;迎风侧泄漏与背风侧泄漏情况相似,但迎风侧泄漏危险区域的纵剖面面积更大,更危险。应用数值方法模拟管道穿孔扩散问题,给出了不同工况下的泄漏范围,为天然气管道泄漏的安全输送及安全抢修提供了理论依据。  相似文献   

5.
针对天然气管道不同损伤过程中的泄漏扩散问题,利用FLUENT软件,建立CFD仿真模型,研究了泄漏口大小对天然气泄漏扩散范围的影响。以山区与城镇交界处的天然气埋地管道为例,考虑风速随高度的变化和关闭阀门后泄漏率随时间的变化,对天然气泄漏扩散进行数值模拟,编写导入FLUENT的UDF程序并对风速和泄漏率进行了修正。实例计算结果表明,扩散范围随着泄漏口的增大而变大,在泄漏口直径为6.35、25.40mm和101.60mm时,天然气爆炸下限距地面高度分别可达92、122m和408m,天然气爆炸下限下风向距泄漏口的水平距离分别可达322、770m和1 291m;由于天然气受管道上层土壤的影响而损失大量湍能,因此泄漏气体在地表和土壤中扩散时,泄漏气体在地表的扩散范围大于在土壤中的扩散范围,其中泄漏口直径为101.60mm时扩散范围最大,天然气爆炸下限下风向距泄漏口的水平距离在地表和土壤中最大分别可达80m和105m。  相似文献   

6.
液化石油气是一种危险性气体,一旦发生泄漏,所造成的后果是非常严重的,所以其安全问题很重要。针对液化石油气的特点,建立有限空间内部发生泄漏扩散的物理模型,并对液化石油气泄漏扩散的过程进行了数值模拟。通过模拟结果分析了其扩散过程的内部流场,并对比了相对湿度不同时其扩散过程的变化规律。结果表明,由于受空气中涡流移动的影响,泄漏点两侧气体扩散的速度矢量由起初的一侧高另一侧低变为一侧低另一侧高;风速增大,加快涡流的产生和移动速度,使C3H8的质量分数分布变化更剧烈;相对湿度较大时气体的下降速度比湿度小时更快,在低于泄漏点高度的平面内,湿度增大,C3H8的质量分数也变大,缩短液化石油气报警器的报警时 间。  相似文献   

7.
城燃管道街道峡谷泄漏扩散CFD数值模拟   总被引:3,自引:0,他引:3  
城市燃气管道的安全时常受到市政建设的威胁而破坏,与天然气管线野外泄漏的情况不同的是,市区复杂的建筑环境会对气体的扩散情况造成干扰,严重危害人员财产安全。选择CFD数值模拟法,对城市街道峡谷内燃气管线的扩散泄漏进行了分析。基于二维街道峡谷断面模型,对截断阀关闭前后燃气泄漏扩散的基本规律进行了分析研究。数值模拟结果表明,风对燃气的扩散起主导作用,街道峡谷内形成的独立而稳定的涡旋气流场会使燃气聚集并且难以扩散。  相似文献   

8.
室内可燃气体泄漏后与空气形成混合气体,容易引发爆燃或爆炸等危险事故,考虑到居民常使用燃气种类有天然气和液化石油气,采用雷诺平均的N-S方程,k—ε湍流模型以及组分输运模型方程,利用CFD技术对二者在有限空间内的泄漏扩散过程进行模拟研究,并与实验结果相比较,对比分析二者在不同泄漏工况下的泄漏扩散规律,结果表明:在泄漏的初始时刻,天然气和液化石油气形成的爆炸危险区域分别在房间上部和下部;液化石油气泄漏后很快就会在整个房间形成爆炸危险区域;通风口加速了泄漏天然气的排放,但房间内始终会存在一定厚度的爆炸危险区域。两种可燃气体在泄漏后形成的爆炸危险区域的分布差异,可为制定室内可燃气体危险事故的预防措施提供参考。  相似文献   

9.
障碍物对高压储氢罐泄漏扩散影响的数值模拟   总被引:1,自引:0,他引:1  
针对高压储氢容器泄漏破坏事故,基于FLUENT软件的物种传输与反应模块建立了高压储氢罐泄漏扩散的模型,提出了研究高压储氢罐泄漏扩散的数值模拟方法.考虑障碍物影响氢气泄漏后的扩散,通过改变障碍物与泄漏位置的距离和障碍物高度对高压储氢罐泄漏扩散进行数值模拟,得到了间距与高度等参量对泄漏扩散的影响规律.模拟结果表明,障碍物对氢气的泄漏扩散有阻碍作用;障碍物高度越高越易减缓危险区域在水平方向的传输,越易增加危险区域在垂直方向的传输;随着障碍物距泄漏孔间距的增加,氢气扩散危险区域在水平方向上传输距离逐渐加大,垂直方向上逐渐减小.模拟分析结果可以为加氢站等场所处理及预防氢气泄漏扩散事故提供参考.  相似文献   

10.
燃气连续性泄漏扩散规律的研究   总被引:1,自引:0,他引:1  
燃气的泄漏和扩散会对人员和环境造成极大的危害,为此,利用CFD方法对燃气连续性泄漏后的扩散现象进行了数值模拟.以丙烷为例,着重研究了障碍物宽度、燃气泄漏速度、风速、泄漏源与障碍物的距离等因素对燃气的扩散过程的影响.在大量数值模拟数据的基础上,经分析得到了燃气在扩散过程中遇障碍物阻挡时的分布规律.  相似文献   

11.
Using k-ε turbulent equation and SIMPLE arithmetic, a multi-buildings sp ace model was set up under realistic circumstances. The methane (CH4) leakage diffusions from 3 gas-transporting pipelines with different pressures under 3 d ifferent wind flow conditions in the space with multi-buildings were simulated and the simulation results were contrasted and analyzed. Simulation results indi cate that the leakage diffusion of CH4 could be influenced by surrounding buil dings, besides the effect of the wind flow...  相似文献   

12.
为评价苯在运输过程中发生泄漏的灾害后果,采用事故后果模拟软件ALOHA分析苯槽罐车泄漏扩散范围和毒性区域,分析苯泄漏被点燃后火灾热辐射及冲击波超压的影响范围,使用人体脆弱性模型计算灾害区域内致死概率及个人风险值,结合Google Earth、Surfer软件绘制事故影响区域图.  相似文献   

13.
研究燃气管道的泄漏,目的在于定性和定量地分析评价泄漏可能带来的危害。基于FLUENT软件,用GAMBIT建立三维泄漏模型,对含硫天然气管道泄漏及扩散进行了三维数值模拟。结果表明:硫化氢的存在增加燃气管道的泄漏危险区域;在自由扩散状态下,泄漏气体主要集中在泄漏口上部,且危险区域较小;当存在环境风时,泄漏危险区域向下风向下移,形成气体聚集区域,而上风向气体较少。可见,硫化氢和环境风的存在,使含硫天然气泄漏扩散的危险范围增大。  相似文献   

14.
对含硫天然气管道泄漏扩散进行模拟研究,在不同风速下对比分析了计算区域内障碍物形状、障碍物坡度对泄漏气体扩散过程的影响规律,并模拟了不同条件下H2S组分的安全区域。结果表明,障碍物的存在使泄漏气体在风力作用下堆积在障碍物的迎风面,障碍物的形状改变泄漏气体的运动路径。当障碍物为无坡度障碍物(建筑物)时,泄漏气体的扩散高度增大,且在水平方向的传输被阻碍;当障碍物为有坡度障碍物(山体)时,泄漏气体在水平方向的扩散距离增大,且在外界风力达到一定速度之后,泄漏气体绕过障碍物在背风区扩散时开始向下沉降,导致地面附近的安全区域范围减小。减小障碍物坡度,风速较小时对泄漏气体的扩散无影响,风速较大时泄漏气体将障碍物包围并在近地面处扩散;增大障碍物坡度,泄漏气体的扩散规律与无坡度障碍物(建筑物)存在时相似。模拟结果可为含硫天然气泄漏事故的处理提供参考。  相似文献   

15.
针对室内燃气在有限空间内泄漏不易扩散的特点, 分析风速对室内燃气泄漏扩散的影响, 建立了室内燃气管道泄漏的模型。采用计算流体力学软件, 对天然气、 液化石油气等两种室内燃气进行稳态泄漏过程的数值模拟。在风速分别为1m / s和3m / s , 泄漏时间分别为1 0、 6 0、 1 2 0s和2 4 0s的条件下, 考察了两种气体的体积分数。结果表明, 风速能够加速室内燃气的扩散; 泄漏的液化石油气更容易发生堆积, 形成爆炸危险区域。研究结果可为燃气泄漏事故的处理提供理论依据。  相似文献   

16.
燃气管线动态泄漏扩散的危险性分析   总被引:1,自引:0,他引:1  
通过对燃气管线动态泄漏过程的分析,建立了动态泄漏率计算模型。以湍流扩散微分方程为基础,根据动态泄漏率不定常的特点,建立了燃气管线动态泄漏扩散模型。讨论分析了火灾爆炸的可能性危险范围和伤害性危险范围的参考标准和计算方法。在实际应用的基础上,对各种危险范围给予了讨论和分析,并对给定条件下的伤害及破坏范围给予了计算。这将为设立和制订高压长输管线和城市主要输运管道附近的重要建筑物(学校等)的修建安全距离提供安全标准和参考,同时也为降低事故可能造成的危害程度提供保障。  相似文献   

17.
随着我国天然气事业的发展,天然气管道规模也在不断扩大,与此同时也带来了安全上的隐患,城市天然气管道泄漏事故频繁发生,严重影响了城市居民的生命及财产安全。主要介绍了城市天然气管道泄漏数值仿真和数值模拟的基本理论,考虑泄漏过程中风场对泄漏的影响,分析了近地面处风场的变化,建立了埋地天然气管道泄漏模型。设定泄漏扩散发生在大气环境,选取CFD软件对网格进行划分并进行局部加密,进行了风场的稳态模拟。在风场达到稳态后,改变后处理边界条件,再对泄漏进行瞬态模拟,得出天然气泄漏扩散随时间的变化规律,定量分析了风速对泄漏扩散的影响。结果表明,建筑物对风场存在干扰,在泄漏过程中气体聚集在近地面及贴近建筑物周围,随着风速的增加,稳态扩散高度降低,但风场对水平扩散的影响较小,风速越大泄漏气体稀释效果越明显,所造成的危险区域越小。  相似文献   

18.
构造了2种不同形态的街道峡谷横断面CFD模型,所构建的模型由3栋不同高度的楼房并行组成,风向垂直于建筑物。并且用这些模型模拟了在3种不同风流速度条件下的街道峡谷流场和泄漏燃气的扩散情况。模拟结果表明,在建筑物的影响下,峡谷内的流场形成的旋涡造成独立而稳定的循环气流,从而影响建筑物迎风面与背风面泄漏燃气的扩散情况。建筑物附近风速的大小和分布也与泄漏燃气的扩散紧密相关。最后基于模拟结果提出了相应的应急措施。  相似文献   

19.
建立了天然气管道在空旷地面发生泄漏的三维模型,对高速泄漏区域进行了网格细化。利用 CFD商业软件 FLUENT 6.3对泄漏过程进行模拟,考察了大气风速、泄漏初速度和泄漏口形状(圆形和菱形)对泄漏的影响。模拟结果表明,风速对天然气泄漏喷射射流角度有较大影响,扩散范围随扩散高度而增大;泄漏初速度对天然气喷射高度有较大影响,扩散高度随泄漏初速度的加快而变高;圆形泄漏口的硫化氢泄漏范围最宽。研究结果对加深长输天然气管道泄漏扩散规律的认识、事故的预防具有一定的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号