首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation kinetics of As(III) with natural and technical oxidants is still notwell understood, despite its importance in understanding the behavior of arsenic in the environment and in arsenic removal procedures. We have studied the oxidation of 6.6 microM As(II) by dissolved oxygen and hydrogen peroxide in the presence of Fe(II,III) at pH 3.5-7.5, on a time scale of hours. As(III) was not measurably oxidized by O2, 20-100 microM H2O2, dissolved Fe(III), or iron(III) (hydr)-oxides as single oxidants, respectively. In contrast, As(III) was partially or completely oxidized in parallel to the oxidation of 20-90 microM Fe(II) by oxygen and by 20 microM H2O2 in aerated solutions. Addition of 2-propanol as an *OH-radical scavenger quenched the As(III) oxidation at low pH but had little effect at neutral pH. High bicarbonate concentrations (100 mM) lead to increased oxidation of As-(III). On the basis of these results, a reaction scheme is proposed in which H2O2 and Fe(II) form *OH radicals at low pH but a different oxidant, possibly an Fe(IV) species, at higher pH. With bicarbonate present, carbonate radicals might also be produced. The oxidant formed at neutral pH oxidizes As(III) and Fe(II) but does not react competitively with 2-propanol. Kinetic modeling of all data simultaneously explains the results quantitatively and provides estimates for reaction rate constants. The observation that As(III) is oxidized in parallel to the oxidation of Fe(II) by O2 and by H2O2 and that the As(III) oxidation is not inhibited by *OH-radical scavengers at neutral pH is significant for the understanding of arsenic redox reactions in the environment and in arsenic removal processes as well as for the understanding of Fenton reactions in general.  相似文献   

2.
Knowledge of antimony redox kinetics is crucial in understanding the impact and fate of Sb in the environment and optimizing Sb removal from drinking water. The rate of oxidation of Sb(III) with H2O2 was measured in 0.5 mol L(-1) NaCl solutions as a function of [Sb(III)], [H2O2], pH, temperature, and ionic strength. The rate of oxidation of Sb(III) with H2O2 can be described by the general expression: -d[Sb(III)]/dt= k[Sb(III)][H2O2][H+](-1) with log k = -6.88 (+/- 0.17) [kc min(-1)]. The undissociated Sb(OH)3 does not react with H2O2: the formation of Sb(OH)4- is needed for the reaction to take place. In a mildly acidic hydrochloric acid medium, the rate of oxidation of Sb(III) is zeroth order with respect to Sb(III) and can be described by the expression -d[Sb(III)]/dt = k[H2O2][H+][Cl-] with log k = 4.44 (+/- 0.05) [k. L2 mol(-2) min(-1)]. The application of the calculated rate laws to environmental conditions suggests that Sb(III) oxidation by H2O2 may be relevant either in surface waters with elevated H2O2 concentrations and alkaline pH values or in treatment systems for contaminated solutions with millimolar H2O2 concentrations.  相似文献   

3.
Recent studies suggest that aqueous Mn(ll) complexes, particularly those with non-carboxylated ligands such as microbial siderophores, may be stable in soil and aquatic environments. In this paper, we determine the stability constants for Mn(ll) and Mn(lll) complexes with the common trihydroxamate siderophore, desferrioxamine B (DFOB). Base and redox titrations were conducted to determine DFOB conditional protonation constants and conditional stability constants for 1:1 DFOB complexes with Mn(ll) and Mn(lll). The conditional protonation constants agree well with literature values. We determined stability constants for three Mn(ll)-DFOB species and one Mn(lll)-DFOB species at 25 degrees C in 0.1 M NaCl. The Mn(lll) HDFOB+ complex can be formed readily by air-oxidation of Mn(ll)-DFOB. This reaction exhibits pseudo first-order kinetics with a rate coefficient that can be characterized as the product of oxygen concentration with a linear combination of the concentrations of the three Mn(ll)-DFOB complexes. The second-order rate coefficients appearing in this linear combination are 1 to 2 orders of magnitude smaller than that associated with oxidation of the hydrolytic species Mn(OH)(0)2. The Mn(lll)HDFOB+ complex is stable for pH in the range of 7.0-11.3; but, at pH < 7.0 it decomposes by internal electron transfer, yielding oxidized DFOB products and Mn(ll). For p[H+] > 11.3, the complex degrades by disproportionation, yielding Mn(ll) and solid MnO2. This range of pH stability supports the hypothesis that aqueous Mn(lll) may play a vital role in the biogeochemical cycling of not only manganese, but also other elements, such as carbon, sulfur, nitrogen, oxygen, and redox-active metals.  相似文献   

4.
The sonochemical degradation rate of Methylene Blue (MB) is markedly increased in the presence of Fe(Ill), a rather inexpensive reagent for the application of sonochemistry to wastewater treatment. The effect of Fe(lll) is due to a sonochemically induced Fenton reaction, where both reactants (Fe(ll) and H2O2) are sonochemically synthesized. Hydroperoxide/superoxide, generated upon sonochemical processes in aerated solution, is a key species involved in both Fe(lll) reduction to Fe(ll) and in the production of H2O2. The Fenton reaction between Fe(ll) and H2O2 then produces hydroxyl radicals, enhancing the degradation of MB. A further enhancement of the degradation of the substrate in the presence of Fe(lll) takes place upon addition of H2O2, which is likely to favor the Fenton process. Interestingly, H2O2 alone, in the absence of Fe(lll), has a very limited effect on the sonochemical degradation rate.  相似文献   

5.
Antimony is an element of growing interest for a variety of industrial applications, even though Sb compounds are classified as priority pollutants by the Environmental Protection Agency of the United States. Iron (Fe) hydroxides appear to be important sorbents for Sb in soils and sediments, but mineral surfaces can also catalyze oxidation processes and may thus mobilize Sb. The aim of this study was to investigate whether goethite immobilizes Sb by sorption or whether Sb(III) adsorbed on goethite is oxidized and then released. The sorption of both Sb(III) and Sb(V) on goethite was studied in 0.01 and 0.1 M KClO4 M solutions as a function of pH and Sb concentration. To monitor oxidation processes Sb species were measured in solution and in the solid phase. The results show that both Sb(III) and Sb(V) form inner-sphere surface complexes at the goethite surface. Antimony(III) strongly adsorbs on goethite over a wide pH range (3-12), whereas maximum Sb(V) adsorption is found below pH 7. At higher ionic strength, the desorption of Sb(V) is shifted to lower pH values, most likely due to the formation of ion pairs KSb(OH)6 degrees. The sorption data of Sb(V) can be fitted by the modified triple-layer surface complexation model. Within 7 days, Sb(III) adsorbed on goethite is partly oxidized at pH 3, 5.9 and 9.7. The weak pH-dependence of the rate coefficients suggests that adsorbed Sb(III) is oxidized by 02 and that the coordination of Sb(III) to the surface increases the electron density of the Sb atom, which enhances the oxidation process. At pH values below pH 7, the oxidation of Sb(III) did not mobilize Sb within 35 days, while 30% of adsorbed Sb(III) was released into the solution at pH 9.9 within the same time. The adsorption of Sb(III) on Fe hydroxides over a wide pH range may be a major pathway for the oxidation and release of Sb(V).  相似文献   

6.
Knowledge of arsenic redox kinetics is crucial for understanding the impact and fate of As in the environment and for optimizing As removal from drinking water. Rapid oxidation of As(III) adsorbed to ferrihydrite (FH) in the presence of hydrogen peroxide (H2O2) might be expected for two reasons. First, the adsorbed As(III) is assumed to be oxidized more readily than the undissociated species in solution. Second, catalyzed decomposition of H2O2 on the FH surface might also lead to As(III) oxidation. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor the oxidation of adsorbed As(III) on the FH surface in situ. No As(III) oxidation within minutes to hours was observed prior to H2O2 addition. Initial pseudo-first-order oxidation rate coefficients for adsorbed As(III), determined at H2O2 concentrations between 8.4 microM and 8.4 mM and pH values from 4 to 8, increased with the H2O2 concentration according to the equation log k(ox) (min(-1)) = 0.17 + 0.50 log [H2O] (mol/L), n = 21, r2 = 0.87. Only a weak pH dependence of log k(ox) was observed (approximately 0.04 logarithm unit increase per pH unit). ATR-FTIR experiments with As(III) adsorbed onto amorphous aluminum hydroxide showed that Fe was necessary to induce As(III) oxidation by catalytic H2O2 decomposition. Supplementary As(III) oxidation experiments in FH suspensions qualitatively confirmed the findings from the in situ ATR-FTIR experiments. Our results indicate that the catalyzed oxidation of As(III) by H2O2 on the surface of iron (hydr)oxides might be a relevant reaction pathway in environmental systems such as surface waters, as well as in engineered systems for As removal from water.  相似文献   

7.
Corrosion of zerovalent iron (ZVI) in oxygen-containing water produces reactive intermediates that can oxidize various organic and inorganic compounds. We investigated the kinetics and mechanism of Fenton reagent generation and As(III) oxidation and removal by ZVI (0.1m2/g) from pH 3-11 in aerated water. Observed half-lives for the oxidation of initially 500 microg/L As(III) by 150 mg Fe(0)/L were 26-80 min at pH 3-9. At pH 11, no As(III) oxidation was observed during the first two hours. Dissolved Fe(III) reached 325, 140, and 6 microM at pH 3, 5, and 7. H2O2 concentrations peaked within 10 min at 1.2, 0.4, and < 0.1 microM at pH 3, 5, and 7, and then decreased to undetectable levels. Addition of 2,2'-bipyridine (1-3 mM), prevented Fe(II) oxidation by O2 and H2O2 and inhibited As(III)oxidation. 2-propanol (14 mM), scavenging OH-radicals, quenched the As(III) oxidation at pH 3, but had almost no effect at pH 5 and 7. Experimental data and kinetic modeling suggest that As(III) was oxidized mainly in solution by the Fenton reaction and removed by sorption on newly formed hydrous ferric oxides. OH-radials are the main oxidant for As(III) at low pH, whereas a more selective oxidant oxidizes As(III) at circumneutral pH.  相似文献   

8.
The ability to quantify the chemical and physical forms of transition metals in atmospheric particulate matter (PM) is essential in determining potential human health and ecological effects. A method for the speciation of iron in atmospheric PM has been adapted which involves extraction in a well-defined solution followed by oxidation state specific detection. The method was applied to a suite of environmental aerosols. Ambient atmospheric aerosols in an urban area of St. Louis (the St. Louis-Midwest Supersite) were collected on Teflon substrates and were leached in one of four different solutions: (1) >18.0 Momega water; (2) 140 microM NaCl solution; (3) pH = 7.4 NaHCO3 solution; and (4) pH = 4.3 acetate buffering system. Fe(ll) was determined directly using the Ferrozine method as adapted to liquid waveguide spectrophotometry using a 1 m path-length cell. Fe(lll) was determined similarly after reduction to Fe(ll). It was found that, at low ionic strength, pH exerted a major influence on Fe(ll) solubility with the greatest Fe(ll) concentration consistently found in the pH = 4.3 acetate buffer. Soluble Fe(lll) (as defined by a 0.2 microm filter) varied little with extractant, which implies that most of the Fe(lll) detected was colloidal. To characterize well-defined materials for future reference, NIST standard reference materials were also analyzed for soluble Fe(ll) and Fe(lll). For all SRMs tested, a maximum of 2.4% of the total iron (Urban Dust 1649a) was soluble in pH = 4.3 acetate buffer. For calibration curves covering the ranges of 0.5-20 microg/L Fe(ll), excellent linearity was observed in all leaching solutions with R2 values of > 0.999. Co-located filters were used to test the effect of storage time on iron oxidation state in the ambient particles as a function of time. On two samples, an average Fe(ll) decay rate of 0.89 and 0.57 ng Fe(ll) g(-1) PM day(-1) was determined from the slope of the regression, however this decrease was determined not to be significant over 3 months (95% confidence). As an application of this method to mobile source emissions, size-resolved PM10 samples were collected at the inlet and outlet of the Caldecott Motor Vehicle Tunnel in northern California. These samples indicate that the coarse fraction (PM10-PM2.5) contains almost 50% of the total soluble Fe(ll) in the aerosol.  相似文献   

9.
Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H(2)O(2)-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H(2)O(2), which generates HO(?) along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H(2)O(2) system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H(2)O(2) to efficiently generate HO(?), the dual role of H(2)O(2) as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). As a result, HO(?) can be generated using both Cr(III)/H(2)O(2) and Cr(VI)/H(2)O(2) reactions, either concurrently or sequentially. The formation of HO(?) was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO(?)] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO(?) scavenger. The oxidation rate of 4-CP in the Cr(III)/H(2)O(2) solution was highly influenced by pH, which is ascribed to the hydrolysis of Cr(III)(H(2)O)(n) into Cr(III)(H(2)O)(n-m)(OH)(m) and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H(2)O(2) combined with Cr(VI)/H(2)O(2) process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).  相似文献   

10.
Photochemical reactions involving aqueous Fe(III) complexes are known to generate free radical species such as OH* that are capable of oxidizing numerous inorganic and organic compounds. Recent work has shown that As(III) can be oxidized to As(V) via photochemical reactions in ferric-citrate solutions; however, the mechanisms of As(III) oxidation and the potential importance of photochemical oxidation in natural waters are poorly understood. Consequently, the objectives of this study were to evaluate oxidation rates of As(III) in irradiated ferrioxalate solutions as a function of pH, identify mechanisms of photochemical As(III) oxidation, and evaluate the oxidation of As(III) in a representative natural water containing dissolved organic C (DOC). The oxidation of As(III) was studied in irradiated ferrioxalate solutions as a function of pH (3-7), As(III), Fe(III), and 2-propanol concentration. Rates of As(III) oxidation (0.5-254 microM h(-1)) were first-order in As(III) and Fe(III) concentration and increased with decreasing pH. Experiments conducted at pH 5.0 using 2-propanol as an OH* scavenger in light and dark reactions suggested that OH* is the important free radical responsible for As(III) oxidation. Significant rates of As(III) oxidation (4-6 microM h(-1)) were also observed in a natural water sample containing DOC, indicating that photochemical oxidation of As(III) may contribute to arsenic (As) cycling in natural waters.  相似文献   

11.
Solution chemical techniques were used to investigate the oxidation of As(III) to As(V) in 0.011 M arsenite suspension of well-crystallized hexagonal birnessite (H-birnessite, 2.7 g L(-1)) at pH 5. Products of the reaction were studied by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), atomic force microscopy (AFM), and X-ray absorption near-edge structure spectroscopy (XANES). In the initial stage (first 74 h), chemical results have been interpreted quantitatively, and the reaction is shown to proceed in two steps as suggested by previous authors: 2>Mn(IV)O2 + H3AsO3 + H2O --> 2>Mn(III)OOH + H2AsO4- + H+ and 2>Mn(III)OOH + H3AsO3 + 3H+ --> 2Mn2+ + H2AsO4- + 2H2O. The As(III) depletion rate was lower (0.02 h(-1)) than measured in previous studies because of the high crystallinity of the H-birnessite sample used in this study. The surface reaction sites are likely located on the edges of H-birnessite layers rather than on the basal planes. The ion activity product of Mn(II) and As(V) reached after 74 h reaction time was the solubility product of a protonated manganese arsenate, having a chemical composition close to that of krautite as identified by XANES and EDS. Krautite precipitation reaction can be written as follows: Mn2+ + H2AsO4- + H2O = MnHAsO4 x H2O + H+ log Ks approximately -0.2. Equilibrium was reached after 400 h. The manganese arsenate precipitate formed long fibers that aggregated at the surface of H-birnessite. The oxidation reaction transforms a toxic species, As(III), to a less toxic aqueous species, which further precipitates with Mn2+ as a mixed As-Mn solid characterized by a low solubility product.  相似文献   

12.
Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters   总被引:1,自引:0,他引:1  
The oxidation of Fe(II) by molecular oxygen at nanomolar levels has been studied using a UV-Vis spectrophotometric system equipped with a long liquid waveguide capillary flow cell. The effect of pH (6.5-8.2), NaHCO3 (0.1-9 mM), temperature (3-35 degrees C), and salinity (0-36) on the oxidation of Fe(II) are presented. The first-order oxidation rates at nanomolar Fe(II) are higher than the values at micromolar levels at a pH below 7.5 and lower than the values at a higher pH. A kinetic model has been developed to consider the mechanism of the Fe(II) oxidation and the speciation of Fe(II) in seawater, the interactions between the major ions, and the oxidation rates of the different Fe(II) species. The concentration of Fe(II) is largely controlled by oxidation with O2 and O2.- but is also affected by hydrogen peroxide that may be both initially present and formed from the oxidation of Fe(II) by superoxide. The model has been applied to describe the effect of pH, concentration of NaHCO3, temperature, and salinity on the kinetics of Fe(II) oxidation. At a pH over 7.2, Fe(OH)2 is the most important contributing species to the apparent oxidation rate. At high levels of CO3(2-) and pH, the Fe(CO3)2(2-) species become important. At pH values below 7, the oxidation rate is controlled by Fe2+. Using the model, log k(i) values for the most kinetically active species (Fe2+, Fe(OH)+, Fe(OH)2, Fe(CO3), and Fe(CO3)2(2-)) are given that are valid over a wide range of temperature, salinity, and pH in natural waters. Model results showthatwhen H2O2 concentrations approach the Fe(II) concentrations used in this study, the oxidation of Fe(II) with H2O2 also needs to be considered.  相似文献   

13.
Arsenic contamination in aquatic systems is a worldwide concern. Understanding the redox cycling of arsenic in sediments is critical in evaluating the fate of arsenic in aquatic environments and in developing sediment quality guidelines. The direct oxidation of inorganic trivalent arsenic, As(III), by dissolved molecular oxygen has been studied and found to be quite slow. A chemical pathway for As(III) oxidation has been proposed recently in which a radical species, Fe(IV), produced during the oxidation of divalent iron, Fe(II), facilitates the oxidation of As(III). Rapid oxidation of As(III) was observed (on a time scale of hours) in batch systems at pH 7 and 7.5, but the extent of As(III) oxidation was limited. The Fe(II)-catalyzed oxidation of As(III) is examined in a sediment column using both computational and experimental studies. A reactive-transport model is constructed that incorporates the complex kinetics of radical species generation and Fe(II) and As(III) oxidation that have been developed previously. The model is applied to experimental column data. Results indicate that the proposed chemical pathway can explain As(III) oxidation in sediments and that transport in sediments plays a vital role in increasing the extent of As(III) oxidation and efficiency of the Fe(II) catalysis.  相似文献   

14.
Conditional distribution coefficients (Dom) for Sb(III) binding to three commercial humic acids (terrestrial, coal, and aquatic) were measured at environmentally relevant Sb(III)/DOC ratios and as a function of pH using an equilibrium dialysis method. Maximum binding of Sb(III) was observed around pH 6 for two of the humic acids. The third humic acid showed constant Dom values up to pH 6 and decreasing Dom values for pH > 6. Sb(III)/DOC ratio was found to be important for Dom (20 times higher Dom for 60 times lower Sb(III)/DOC ratio). Moreover, Dom depends on the individual humic acid, suggesting that different functional groups are involved and/or different degrees of stabilization by chelation or H-bridges. Chemical modeling of Sb(III)-humics binding at different pH values is consistent with two binding sites involving (i) a phenolic entity forming a neutral complex and (ii) a carboxylic entity forming a negatively charged complex. Under environmentally relevant conditions, over 30% of total Sb(III) may be bound to natural organic matter.  相似文献   

15.
The objective of this study was to identify the rate and mechanism of abiotic oxidation of ferrous iron at the water-ferric oxide interface (heterogeneous oxidation) at neutral pH. Oxidation was conducted at a low partial pressure of O2 to slow the reactions and to represent very low dissolved oxygen (DO) conditions that can occur at oxic/anoxic fronts. Hydrous ferric oxide (HFO) was partially converted to goethite after 24 h of anoxic contact with Fe(II), consistent with previous results. This resulted in a significant decrease in sorption of Fe(II). No conversion to goethite was observed after 25 min of anoxic contact between HFO and Fe(II). O2 was then introduced into the chamber and sparged (transfer half-time of 1.6 min) into the previously anoxic suspension, and the rate of oxidation of Fe(II) and the distribution between sorbed and dissolved Fe(II) were measured with time. The concentration of sorbed Fe(II) remained steady during each experiment, despite removal of all measurable dissolved Fe(II) in some experiments. The rate of oxidation of Fe(II) was proportional to the concentration of DO and both sorbed and dissolved Fe(II) up to a surface density of 0.02 mol Fe(II) per mol Fe(III), i.e., approximately 0.2 Fe(II) per nm2 of ferric oxide surface area. This result differs from previous studies of heterogeneous oxidation, which found that the rate was proportional to sorbed Fe(II) and DO but did not find a dependence on dissolved Fe(II). Most previous experiments were autocatalytic; i.e., the initial concentration of ferric oxide was low or none, and sorbed Fe(II) was not measured. The results were consistentwith an anode/cathode mechanism, with O2 reduced at electron-deficient sites with strongly sorbed Fe(II) and Fe(II) oxidized at electron-rich sites without sorbed Fe(II). The pseudo-first-order rate constants for oxidation of dissolved Fe(II) were about 10 times faster than those previously predicted for heterogeneous oxidation of Fe(II).  相似文献   

16.
Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals   总被引:1,自引:0,他引:1  
Arsenic contamination has been found in the groundwater of several countries. Photocatalysis can rapidly oxidize arsenite (As(III)) to less labile and less toxic arsenate (As(V)), which then can be removed by adsorption onto photocatalyst surfaces. This study investigates the photocatalytic oxidation of As(III) to As(V) as a function of As(III) concentration, pH, catalyst loading, light intensity, dissolved oxygen concentration, type of TiO2 surfaces, and ferric ions to understand the kinetics and the mechanism of As(III) oxidation in the UV/TiO2 system. Photocatalytic oxidation of As(III) to As(V) takes place in minutes and follows zero-order kinetics. Benzoic acid (BA) was used as a hydroxyl radical (.OH) scavenger to provide evidence for the .OH as the main oxidant for oxidation of As(III). The .OH radical was independently generated by nitrate photolysis, and kinetics of As(III) oxidation by the .OH radical was determined. Formation of salicylic acid (SA) from the oxidation of BA by .OH also demonstrates the involvement of .OH in the mechanism of As(III) oxidation. The effect of Fe(III) on As(III) oxidation at different pH values with and without TiO2 under UV light was examined. The results suggest that .OH is the dominant oxidant for As(III) oxidation. Two commercially available TiO2 suspensions, Degussa P25 and Hombikat UV100, were tested for the removal of arsenic through oxidation of As(III) to As(V) followed by adsorption of As(V) onto TiO2 surfaces. Results showed that complete removal of arsenic below the World Health Organization drinking water limit of 10 microg/L could be achieved.  相似文献   

17.
Photoinduced oxidation of antimony(III) in the presence of humic acid   总被引:1,自引:0,他引:1  
Interactions of antimony with natural organic matter (NOM) are important for the fate of Sb in aquatic systems. The kinetics of the photosensitized oxidation of Sb(III) to Sb(V) in the presence of Suwannee River Humic Acid (SRHA) was investigated using UV-A and visible light (medium-pressure mercury lamp). At a concentration of 5 mg L(-1) dissolved organic carbon (DOC) the light-induced reaction was 9000 times faster (rate coefficient k(exp) = 7.0 +/- 0.05 x 10(-4) s(-1)) than the dark reaction and followed pseudo-first-order kinetics. Rates increased linearly with the concentration of DOC. Between pH 4 and 8 rates increased by a factor of 5. Further results and kinetic considerations indicate that singlet oxygen, hydroxyl radicals, hydrogen peroxide, and hydroperoxyl radicals/superoxide are not important photooxidants in this system, while other NOM-derived reactive species, in particular excited triplet states and/or phenoxyl radicals, seem to be relevant. The dependence of rate coefficients on Sb(III)/DOC ratio was consistent with a two binding site model including (i) a strong binding site at low concentration inducing fast oxidation, (ii) a weak binding site at high concentration inducing slower oxidation, and (iii) the even slower oxidation of Sb(OH)3. Photoirradiation of natural water samples spiked with Sb(III) showed that the oxidation rates could be well predicted based on DOC.  相似文献   

18.
Ferrate(VI) oxidation of weak-acid dissociable cyanides   总被引:1,自引:0,他引:1  
Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)), were studied as a function of pH (9.1-10.5) and temperature (15-45 degrees C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN)4(2-) and Ni(CN)4(2-), and the rate-laws for the oxidation may be -d[Fe(VI)]/dt = k[Fe(VI)][M(CN)4(2-)]n where n = 0.5 and 1 for Cd(CN)4(2-) and Ni(CN)4(2-), respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO4(-). The stoichiometries with Fe(VI) were determined to be: 4HFeO4(-) + M(CN)4(2-) + 6H2O --> 4Fe(OH)3 + M(2+) + 4NCO(-) + O2 + 4OH(-). Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present.  相似文献   

19.
We investigated the stoichiometry, kinetics, and mechanism of arsenite [As(III)] oxidation by ferrate [Fe(VI)] and performed arsenic removal tests using Fe(VI) as both an oxidant and a coagulant. As(III) was oxidized to As(V) (arsenate) by Fe(VI), with a stoichiometry of 3:2 [As(III):Fe(VI)]. Kinetic studies showed that the reaction of As(III) with Fe(VI) was first-order with respect to both reactants, and its observed second-order rate constant at 25 degrees C decreased nonlinearly from (3.54 +/- 0.24) x 10(5) to (1.23 +/- 0.01) x 10(3) M(-1) s(-1) with an increase of pH from 8.4 to 12.9. A reaction mechanism by oxygen transfer has been proposed for the oxidation of As(III) by Fe(VI). Arsenic removal tests with river water showed that, with minimum 2.0 mg L(-1) Fe(VI), the arsenic concentration can be lowered from an initial 517 to below 50 microg L(-1), which is the regulation level for As in Bangladesh. From this result, Fe(VI) was demonstrated to be very effective in the removal of arsenic species from water at a relatively low dose level (2.0 mg L(-1)). In addition, the combined use of a small amount of Fe(VI) (below 0.5 mg L(-1)) and Fe(III) as a major coagulant was found to be a practical and effective method for arsenic removal.  相似文献   

20.
The oxidation rate of arsenopyrite by dissolved oxygen was measured using a mixed flow reactor at dissolved O2 concentrations of 0.007-0.77 mM, pH 1.8-12.6, and temperatures of 15-45 degrees C. As(III) was the dominant redox species (>75%) in the experimental system, and the As(III)/As(V) ratio of effluent waters did not change with pH. The results were used to derive the following rate law expression (valid between pH 1.8 and 6.4): r = 10((-2211 +/- 57)T) (mO2)(0.45 +/- 0.05), where r is the rate of release of dissolved As in mol m(-2) s(-1) and T is in Kelvin. Activation energies (Ea) for oxidation of arsenopyrite by 02 at pH 1.8 and 5.9 are 43 and 57 kJ/mol, respectively, and they compare to an Ea value of 16 kJ/mol for oxidation by Fe(III) at pH 1.8. Apparent As release rates passed through a minimum in the pH range 7-8, which may have been due to oxidation of Fe2+ to hydrous ferric oxide (HFO) with attenuation of dissolved As onto the freshly precipitated HFO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号