首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The reaction diffusion between Fe and Al during spark plasma sintering (SPS) was studied. Microstructural evolution was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the sintering kinetics was disclosed. The main interphase of the SPS sample was Fe2Al5 at 773–873 K. Ball-milling enabled a large number of lattice defects and grain boundaries thus the reaction kinetics was accelerated, although the direct current can also promote those defects. After milling, the phase transformation kinetics was improved from 0.207 before mill to 4.56×10?3. Besides, this work provided more details for the generation of Joule heating. The resistance offered to the electric path was considered to be the source of Joule heating, and particularly the resistance offered by the different contact interfaces of die, punch, graphite foil and the sample played a leading role for the generation of Joule heating during spark plasma sintering.  相似文献   

2.
By means of optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C, N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick.When being sintered at 1 200℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1200℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resul-ting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1350℃ covers a wide range of 90-500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2.Graphite exists in band-like shape.  相似文献   

3.
烧结气氛对Ti(CN)基金属陶瓷组织和性能的影响   总被引:3,自引:0,他引:3  
用X射线衍射、背散射扫描电镜及能谱仪等分析手段研究了烧结气氛(真空、N2、Ar)对不同成分TiC基和Ti(CN)基金属陶瓷合金显微组织和性能的影响.金属陶瓷在N2和Ar中烧结后,合金碳含量比在真空中烧结的碳含量低0.5%左右;在N2中烧结后,合金的氮含量提高了0.5%左右.环状结构心部可以是以钨等重金属元素为主要成分的碳化物,也可以是以钛为主要成分的碳化物和碳氮化物.环状结构为金属元素含量和分布不同的(Ti,W,Ta,Mo,Co,Ni)(C,N)固溶体,粘结相是与Ti,W,Ta,Mo,C,N等元素有不同溶解度的钴镍固溶体.真空烧结后组织结构比较均匀,合金的性能最好.在Ar、N2中烧结后,气氛中的氧和氮参加烧结反应,影响合金成分碳氮平衡,在合金表面形成壳层结构,产生表面缺陷,合金的密度、显微硬度、抗弯强度均有比较大的降低;N2气氛影响更大.  相似文献   

4.
Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce bulk Al/diamond composites. The effects of the powder mixing process on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated. The results show that the powder mixing process can significantly affect the microstructure and the thermal conductivity of the composites. Agglomerations of the particles occurred in mixed powders using MM for 30 min, which led to high pore content and weak interfacial bonding in the composites and resulted in low relative density and low thermal conductivity for the composites. Mixed powders of homogeneous distribution of diamond particles could be obtained using MA for 10 min and MM for 2 h. The composite prepared through MA indicated a high relative density but low thermal conductivity due to its defects, such as damaged particles, Fe impurity, and local interfacial debonding, which were mainly introduced in the MA process. In contrast, the composite made by MM for 2 h demonstrated high relative density and an excellent thermal conductivity of 325 W·m-1·K-1, owing to its having few defects and strong interfacial bonding.  相似文献   

5.
热处理对高岭石结构转变及活性的影响   总被引:1,自引:0,他引:1  
采用煅烧高岭石的方法制备矿物聚合材料,采用DTA-TG、XRD和IR分析等手段研究高岭石经过热处理后的结构转变过程。结果表明:热处理直接影响到高岭石结构转变及煅烧高岭石的活性。煅烧后,高岭石的结构转变经历了脱羟基(约541℃)、偏高岭石化(541~850℃)和Al2O3分凝(>950℃)3个过程,煅烧温度达到950℃后,生成新相γ-Al2O3。通过对煅烧高岭石所制备的矿物聚合材料抗折强度的评价确定了煅烧高岭石活性较适宜的热处理制度:煅烧温度为850℃,煅烧时间3 h。煅烧高岭石的长程无序特征是煅烧高岭石具有较高活性的原因,γ-Al2O3的生成是导致煅烧高岭石活性下降和矿物聚合材料抗折强度降低的主要原因。  相似文献   

6.
The effect of vanadium carbide (VC) addition on the sinterability and the microstructure of ultrafine Ti(C, N)-based cermets consolidated through spark plasma sintering (SPS) was systematically investigated using optical microscope, scanning electron microscope (SEM) with X-ray energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and transmission electron microscope (TEM). Our results reveal that the addition of VC increases the porosity of sintering body and depresses the sinterability of Ti(C, N)-based cermets. It is also found that the VC addition has a significant influence on the microstructure of ultrafine Ti(C, N)-based cermets, which inhibits the dissolution of titanium-containing compounds and the formation of inner rim phase and outer rim phase, thus preventing from grain growth. Owing to the depressed dissolution and precipitation, nitrogen liberation is mitigated, therefore resulting in less amount of graphite phase in the samples. In substance, VC changes the solubility of metallic elements in the binder, which makes more elements of Mo and W to be reserved in the binder and thus greatly decreases the content of titanium dissolved into the binder. The re-building solubility rule determines the development of phases and microstructure.  相似文献   

7.
控冷工艺对ER70S-6钢相变和组织的影响   总被引:4,自引:0,他引:4  
丁华  刘雅政  张立芬 《轧钢》2002,19(1):15-17
通过热模拟机Gleeble - 15 0 0对控制冷却过程的模拟 ,研究了终轧温度、吐丝温度和相变区冷速对ER70S - 6焊丝钢相变点的影响规律 ,测定了该钢种的动态连续冷却转变 (CCT)曲线 ,研究了控冷工艺参数对组织结构、铁素体量和铁素体平均晶粒尺寸的影响 ,得出其影响规律性的结论。  相似文献   

8.
1. Introduction Hydrogen-absorbing materials like sodium alanates, advanced BCC alloys, and Mg-based al- loys have been widely investigated [1]. Mg-based alloys are attractive as potential hydrogen storage materials because of their high storage capacity and low cost [2-3]. The hydrogen desorption kinetics has been improved using various methods [4-6], espe- cially alloying. It was reported that the kinetics of hydriding and dehydriding of Mg-based alloys can be improved by alloying with rar…  相似文献   

9.
La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号