首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
陈波  杨晓  涂庆 《润滑与密封》2019,44(3):92-98
采用ABAQUS软件建立帽形滑环式组合密封有限元模型,研究不同工作压力、密封间隙、运动速度和摩擦因数对其密封性能的影响规律。研究结果表明:静密封工况下,活塞杆与O形圈间的最大接触应力是影响密封性能的关键因素,随着工作压力的增大或密封间隙的减小,O形圈与帽形滑环的最大Von Mises应力均逐渐增大,各表面间的接触应力也逐渐上升;动密封工况下,工作压力越大、密封间隙越小,接触应力越大,密封间隙为0.3 mm其动密封性能最优,而随摩擦因数的增大,接触应力总体呈上升趋势,运动速度则对于接触应力基本无影响。  相似文献   

2.
为研究C形滑环式组合密封的密封性能,运用Abaqus建立其二维轴对称有限元模型,研究工作压力、密封间隙、往复运动速度和摩擦因数对密封性能的影响。仿真结果表明,静密封工作时,O形圈与C形滑环之间的最大接触应力是密封的关键;随着工作压力的增大,O形密封圈和C形滑环的最大Von Mises以及二者之间的最大接触应力均呈现出增大趋势;密封间隙越小,接触应力越大。动密封工作时,密封间隙和工作压力对滑动密封的变化趋势与静密封时基本一致;C形滑环与活塞杆之间的摩擦因数越小,密封效果越好;往复运动速度对最大接触应力的影响不大。  相似文献   

3.
为研究斯特林发动机活塞杆无油润滑帽式组合密封的动密封性能,利用有限元分析软件Abaqus建立帽式密封的二维轴对称有限元模型,基于系统实际工况,研究工质压力对帽式密封性能的影响,得到不同压力下的有效密封区域。静态密封性能分析结果表明,帽式密封环与活塞杆的接触应力是密封的关键,动态密封性能分析结果表明,两者接触应力和密封区域随压力增大而增大,且外行程接触应力略大于内行程。通过热力耦合动态仿真模拟,分析环境温度、摩擦因数、往复运动速度对动密封性能的影响。结果表明:环境温度对帽式密封温度场影响不大,热源主要来自摩擦热;往复运动速度对其密封性能影响也不大,而摩擦因数的影响较大,摩擦因数越小,帽式密封的密封效果越好,使用寿命越长。  相似文献   

4.
利用ANSYS软件建立深海环境下工作的液压系统的X形圈密封结构的二维轴对称模型,计算X形圈在不同密封状态下的应力分布,分析压缩率、密封压力、摩擦因数等因素对其密封性能和相关应力的影响。结果表明:应力随压缩率、密封压力、摩擦因数的增大而增大;静态密封时,X形圈内侧与密封槽会形成密闭空腔,不适合应用于深海环境;承载密封时,密封压力对接触应力、等效应力、剪切应力的影响依次减小;滑动密封时,摩擦应力逐渐趋于稳定,且密封压力和摩擦因数对摩擦应力影响较大。  相似文献   

5.
为了探究不同结构及运行参数对双唇Y形密封性能的影响以及最优动态密封参数组合,利用ABAQUS有限元分析软件模拟分析双唇Y形拉杆密封在静压状态下的密封性能,通过改变第二内唇的左右倾角、轴向位置和过盈量,研究参数变化对双唇Y形拉杆密封性能的影响。分析动态密封下工作压力、活塞杆运行速度和密封件粗糙度对双唇Y形圈的摩擦力矩、泄漏量的影响。并利用田口试验设计方法对密封圈参数进行优化,确定参数的最佳水平。结果表明:随着第二内唇过盈量增大,两个唇最大接触压力均随之增大,而轴向位置对第二内唇最大接触压力影响不明显;当第二内唇左倾角大于25°、右倾角大于30°后最大接触压力波动显著增加;密封圈与活塞杆间的摩擦力随着密封件粗糙度、密封压力的增加而变大,而往复速度对摩擦力影响不大;当粗糙度大于0.95μm时密封出现外泄漏,密封压力的增加使密封圈的净泄漏量逐渐减小。研究的双唇往复密封最佳动态密封参数组合为工作压力8 MPa、粗糙度0.9μm、活塞杆运行速度10 mm/s。该研究结果可为具有微小扭转或弯曲变形工况下的液压缸拉杆密封设计提供参考。  相似文献   

6.
以旋塞阀柱面O形橡胶密封圈为对象进行受力分析;利用ABAQUS软件实现阀芯旋转运动的三维非线性接触动力学仿真,分析了密封圈硬度、摩擦因数及阀芯旋转速度等因素对柱面密封圈最大接触压力和Von Mises应力状况的影响。结果表明:柱面O形密封圈的左右两端是最大应力发生的主要部位;密封圈硬度值和摩擦因数是影响密封性能的重要因素;阀芯旋转速度在一定范围内运行时,对密封性能影响较小。  相似文献   

7.
建立矩形密封圈的混合润滑模型,分析工作压力、活塞杆运行速度和密封件粗糙度对轴向往复用矩形密封圈的摩擦力矩、泄漏量的影响。结果表明:过大的密封压力会对密封件造成损坏,使得摩擦力和净泄漏量极速增大;往复速度的增加会使摩擦力线性增大,直线往复密封的净泄漏量随着表面粗糙度的增大表现为越来越大的增量。利用田口实验设计方法对矩形密封圈操作压力、运行速度和密封件粗糙度进行正交试验,分析得到最优参数组合,并得到各影响因素对密封性能的影响程度由大到小依次为往复速度、粗糙度、密封压力。  相似文献   

8.
应用ABAQUS软件建立YO组合密封的有限元模型,分别比较Y形组合密封与Y形密封、聚氨酯和丁腈橡胶2种材料的Y形组合密封,在密封区域的静态接触压力和Mises应力分布,分析O形圈截面直径对2种材料Y形组合密封性能的影响规律。结果表明:Y形组合密封在密封区域的接触压力和Mises应力均大于相同规格、材料的Y形圈,且外行程时Y形组合密封接触压力增大更明显,应力分布更均匀,验证了Y形组合密封的双重密封和改善根部抗撕裂的特性;在O形圈截面直径相同的情况下,聚氨酯组合密封外行程与内行程的最大接触压力差值远远高于丁腈橡胶组合密封,而丁腈橡胶组合密封Mises应力分布更均匀;随着O形圈截面直径的增大,聚氨酯组合密封的最大接触压力呈现先增大后减小的趋势,丁腈橡胶组合密封呈现逐渐减小的趋势,但两者的Mises应力均呈现逐渐增大的趋势,且丁腈橡胶组合密封增大更显著。研究结果为不同工作条件下密封件的选择提供了参考依据。  相似文献   

9.
以某大采高液压支架立柱组合蕾形密封圈为研究对象,采用有限元法分析唇内、外倾角和唇谷高等结构参数对组合蕾形密封圈静密封性能的影响,同时研究油压压力、密封间隙、立柱活塞速度、摩擦因数对密封圈动密封性能的影响。结果表明:一定取值范围内,唇内、外倾角和唇谷高越大,静密封性能越好;油压越大、密封间隙越小,动密封性能越好;摩擦因数越大,外行程时动密封性能越好,内行程时则相反;活塞运动速度对动密封性能影响较小。为保证该组合蕾形密封圈具有良好的综合密封性能,各参数优化取值范围为:唇外倾角20°~30°,唇内倾角20°~35°,唇谷高度12.2~13.2 mm,摩擦因数小于等于0.1,密封间隙0.1~0.3 mm,油压不超过50 MPa。  相似文献   

10.
为改善蕾形密封的密封性能,考虑介质压力渗透效应,利用有限元分析软件ANSYS研究安装工况及介质压力作用下蕾形密封的密封特性,以及运动速度、摩擦因数、几何参数对动密封性能的影响。研究表明:介质压力作用时,蕾形密封密封面接触压力主要由支撑部承担,密封圈不会被挤入密封间隙,具有较好的抗磨损、抗挤出特性;动密封工况下,外行程比内行程产生的接触压力更大,外行程接触压力随摩擦因数增大而增大,内行程则相反,运动速度对动密封性能影响较小。根据几何参数对密封性能的影响对其进行响应面优化,在满足密封要求的前提下降低了活塞杆表面的最大等效应力,降低了活塞杆因表面疲劳磨损而发生密封失效的风险。  相似文献   

11.
针对汽车发动机水泵O形橡胶密封圈宽温度域的工况特点,构建其与温度相关的Mooney-Rivlin材料模型,探讨冷却液温度、压力、摩擦因数等对O形密封圈接触压力、等效应力以及密封性的影响。研究表明:温度的升高将引起接触压力及等效应力的峰值呈幂指数减小,导致密封可靠性降低,但在宽温度域(-40~130℃)工况下,接触压力的峰值始终远大于液体压力,因此该密封圈具有可靠的密封性;液体压力的增大虽然会引起接触压力峰值增大,但其增大的速度比液体压力增大的速度小,因此将引起密封可靠性下降;摩擦因数对密封可靠性的影响不大。  相似文献   

12.
橡胶O形密封圈在高温工况下会发生应力松弛并导致密封失效。基于橡胶黏-超弹本构模型,利用有限元软件ABAQUS建立橡胶O形密封圈与沟槽接触的非线性有限元模型,分析O形密封圈在不同压缩率、不同油压、不同温度下的应力松弛情况及应力分布。结果表明:接触界面上的接触应力分布近似呈抛物线;O形密封圈应力在初期先急剧衰减,而后逐渐缓慢降低;压缩率和油压对应力松弛影响不大,但油压太大会降低密封可靠性;温度升高使应力松弛速率明显增大,并使最终应力降低,降低密封的可靠性。  相似文献   

13.
针对高温、三维复合运动(往复+旋转)耦合作用下冲击螺杆钻具传动轴总成密封失效问题,设计氢化丁腈橡胶热老化试验,基于热老化试验数据建立热老化效应冲击螺杆钻具传动轴总成O形密封圈三维有限元模型,采用有限元方法研究流体压力、温度、摩擦因数和往复速度对传动轴总成O形密封圈静密封及动密封性能的影响。结果表明:静密封状态下高应力区位于O形密封圈右侧,高接触压力区位于O形密封圈内接触面、外接触面和侧面,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大,最大接触压力整体上随着摩擦因数的增大而减小;动密封状态下最大von Mises应力和最大接触压力在往复速度为0.4 m/s和摩擦因数为0.25出现异常规律,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大。由此建议密封圈在静密封和动密封状态,在往复速度小于0.4 m/s和较小摩擦因数下运行。  相似文献   

14.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。  相似文献   

15.
为探究超临界CO2连续萃取环境下合适的料仓用密封件,利用ANSYS软件建立O形、Y形与U杯形密封圈二维对称模型,分析推入过程中压缩量、摩擦因数影响下密封件的接触应力、等效应力和最佳推入形式,以及承压状态下密封件应力分布与应力的变化规律。结果表明:在推入过程中,O形圈拥有较好的预紧密封性能,U杯形圈的等效应力最小且应力分布均匀;随着压缩量与摩擦因数的增大,O形与Y形圈应力变化会发生波动,而U杯形圈各应力保持线性增长;承压工作状态下,唇形的Y形和U杯形密封件密封性能优于O形圈; Y形圈在高压工况下密封性能最优异,但低唇底部容易发生剪切破坏,影响其使用寿命,而U杯形圈在高压工况下密封性能表现最稳定、可靠。  相似文献   

16.
新型双向密封件的接触变形及应力分析   总被引:1,自引:0,他引:1  
叶子波  黄兴 《润滑与密封》2007,32(11):142-145,164
利用大型非线性有限元分析软件ABAQUS,建立X型和V型组合式密封件的轴对称有限元模型,分析其在沟槽内受压缩的几何变形与接触应力分布规律,比较了该类型组合式密封件与工程上常用的滑环式组合密封圈的应力分布情况。结果表明:新型组合式密封圈低压时也能很好地密封,而且密封件整体宽度大,可以承受更大的径向载荷。滑环式组合密封圈摩擦阻力小,耐磨性良好,其结构可以承受较高的油压,适合于动、静密封。新型组合密封圈的单位面积上摩擦功耗小,适用于旋转密封或摆动密封。  相似文献   

17.
杨东亚  余照明  龚俊 《机械制造》2012,50(11):33-35
基于弹性流体动压润滑的理论,对斯特林发动机活塞杆滑动密封结构的工作原理进行定量分析,建立了密封件弹性流体润滑的计算模型与基本方程组,分析了活塞杆滑动速度对油膜厚度的影响,从而给出了活塞杆密封装置摩擦副的润滑状态。计算结果表明:在密封件进、出口处,油膜厚度减小;在活塞杆运动过程中,密封件在部分区域有磨损。为分析摩擦副的润滑状态、预测密封装置的性能与寿命提供了一种方法。  相似文献   

18.
为解决斯特林机活塞杆处介质泄漏的问题,对其帽式密封结构进行改进,并利用有限元分析软件ANSYS建立其二维轴对称模型;基于实际运行工况,分析比较改进密封结构的性能指标,并通过改变边界条件,探究介质压力、摩擦因数及活塞杆运行速度对改进密封结构性能影响规律。结果表明:改进的密封结构消除了原有结构O形圈的应力集中问题,提高了最大接触应力,且在增加有效密封面积40%的同时又将O形圈的最大等效应力降低了近50%;3个关键参数中介质压力对密封性能的影响力最大,对于改进密封结构,在介质压力为6~8.5 MPa时其密封性能最佳。  相似文献   

19.
采用玻璃纤维增强塑料(GFRP)制作的球阀,具有强度高、密度小、耐酸碱腐蚀等优点,已逐步取代金属球阀应用在氯碱化工管道中。以DN50 GFRP浮动球阀为研究对象,分析常压下旋塞预紧力、密封件摩擦因数和密封面宽度对其密封性能的影响,并探究阀球推荐工作压力和GFRP浮动球阀整体设计参数对密封性能影响的主次顺序。结果表明:GFRP浮动球阀最高工作压力不应超过3 MPa,在常压环境下,需施加550 N以上的旋塞预紧力才能保证球阀正常密封;增大密封面摩擦因数可提高其密封性能,当密封面摩擦因数达到0.2时,密封面上最低密封比压最接近临界密封比压,材料利用率最高;随密封面宽度增加,最大密封比压呈先减小后增大的趋势,综合考虑球阀的使用寿命和材料利用率,该阀座的最佳密封面宽度为8.65 mm;密封面宽度对GFRP浮动球阀密封性能影响最大,其次为旋塞预紧力,密封件摩擦因数的影响最小。  相似文献   

20.
利用ANSYS建立T形滑环组合密封的二维轴对称有限元模型,将密封结构划分为4个密封区域,研究静、动密封状态下介质压力、密封间隙、摩擦因数和T形滑环斜边与垂直线之间的角度,对组合密封圈密封性能的影响。仿真结果表明,T形滑环组合密封可以满足研究的压力范围下的静、动密封要求。其最大Von Mises应力和最大接触应力随介质压力增大而增大,随密封间隙增大而减小;最大Von Mises应力和最大接触应力随滑环斜边与垂直线之间角度增大而增大,当角度为2.5°~7.5°时,组合密封可达到密封要求且滑环不易磨损;摩擦因数越小,组合密封动密封性能越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号