首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Simulating water and nitrogen behaviour in soils cropped with winter wheat   总被引:1,自引:0,他引:1  
The SWATNIT model [26], predicting water and nitrogen transport in cropped soils, was evaluated on experimental data of winter wheat for different N treatments. The experiments were monitored at three different locations on different soil types in the Netherlands. Crop growth was simulated using the SUCROS model [11] which was integrated in the SWATNIT model. Both water and nitrogen stress were incorporated. Except for the soil hydraulic properties, all model parameters were taken from literature. The model performance was evaluated on its capability to predict soil moisture profiles, nitrate and ammonia profiles, the time course of simulated total dry matter production and LAI; and crop N-uptake. Results for the simulations of the soil moisture profile indicate that the soil hydraulic properties did not reflect the actual physical behaviour of the soil with respect to soil moisture. Good agreement is found between the measured and simulated nitrate and ammonia profiles. The simulation of the nitrate content of the top layer at Bouwing was improved by increasing the NH 4 + -N-distribution coefficient thereby improving the simulation of the NH 4 + -N-content in this layer. Deviations between simulated and measured nitrate concentrations also occurred in the bottom layers (60–100 cm) of the soil profile. The phreatic ground water might influence the nitrate concentrations in the bottom layers. Concerning crop growth modelling, improvements are needed with respect to the partitioning of total dry matter production over the different plant organs in function of the stress, the calculation of the nitrogen stress and the total nitrogen uptake of the crop through a better estimate of the N-demand of the different plant organs.  相似文献   

2.
The effect of sole and intercropping of field pea (Pisumsativum L.) and spring barley (Hordeum vulgareL.) and of crop residue management on crop yield,NO3 leaching and N balance in the cropping systemwas tested in a 2-year lysimeter experiment on a temperate sandy loam soil. Thecrop rotation was pea and barley sole and intercrops followed by winter-rye anda fallow period. The Land Equivalent Ratio (LER), which is defined as therelative land area under sole crops that is required to produce the yieldsachieved in intercropping, was used to compare intercropping performancerelative to sole cropping. Crops received no fertilizer in the experimentalperiod. Natural 15N abundance techniques were used to determine peaN2 fixation. The pea–barley intercrop yielded 4.0 Mg grainha–1, which was about 0.5 Mg lowerthan theyields of sole cropped pea but about 1.5 Mg greater than harvestedin sole cropped barley. Calculation of the LER showed thatplant growth resources were used from 17 to 31% more efficiently by theintercrop than by the sole crops. Pea increased the N derived fromN2fixation from 70% when sole cropped to 99% of the total aboveground Naccumulation when intercropped. However, based upon aboveground N accumulationthe pea–barley intercrop yielded about 85 kg Nha–1, which was about 65 kg lower thansolecropped pea but about three times greater than harvested in sole croppedbarley.Despite different preceding crops and removal or incorporation of straw, therewas no significant difference between the subsequent non-fertilized winter-ryegrain yields averaging 2.8 Mg ha–1, indicating anequalization of the quality of incorporated residue by theNO3 leaching pattern.NO3 leaching throughout the experimental periodwas61 to 76 kg N ha–1. Leaching dynamics indicateddifferences in the temporal N mineralization comparing lysimeters previouslycropped with pea or with barley. The major part of this N was leached duringautumn and winter. Leaching tended to be smaller in the lysimeters originallycropped with the pea–barley intercrops, although not significantly differentfromthe sole cropped pea and barley lysimeters. Soil N balances indicated depletionof N in the soil–plant system during the experimental period, independent ofcropping system and residue management. N complementarity in the croppingsystemand the synchrony between residual N availability and crop N uptake isdiscussed.  相似文献   

3.
Three field trials were conducted in the early and late rainy season on a Piarco Series soil (Aquoxic Tropudults) in Central Trinidad to monitor downward movement of NH 4 + -N and NO 3 - -N under flat-tilled and ridge-tilled conditions as affected by mulch application. The first experiment was carried out in the early rainy season under bare-fallowed conditions, while okra (Abelmoschus esculentus) was the test crop used in the two remaining trials, which were conducted during the early and late rainy season periods. The plots were fertilized with urea seven days after crop emergence and 14 days after land preparation for the cropped and bare-fallowed experiments respectively. Soil samples were collected weekly after fertilizer application and analyzed for NH 4 + -N, NO 3 - -N and soil water.Urea application increased NH 4 + -N levels in the soil and NH 4 + -N was the dominant inorganic N form observed for the first four weeks after fertilization. Mulch application decreased NH 4 + -N and NO 3 - -N soil levels. Ridging the soil increased downward movement of NH 4 + -N and NO 3 - -N. Under bare-fallowed conditions, downward movement of NH 4 + -N was noted in the 30 to 45 cm soil layer at seven days after fertilization, while under cropped conditions its movement was restricted to the 15 to 30 cm layer within the same period. In bare-fallowed soil, increased NO 3 - -N and its downward movement was noted after four weeks of fertilization. In the cropped soil, downward movement of NO 3 - -N was observed one week after fertilization in the early rainy season and three weeks after fertilization in the late rainy season.  相似文献   

4.
No extensive investigation on the effect of fertilizers on Amazon cocoa variety (Theobroma cacao L.) has been performed in Nigeria. Therefore eight fertilizer treatments involving nitrogen and phosphorus, replicated six times at four locations across southern Nigeria, were established in 1973. The four N levels (N0, N1, N2, N3) involved were 0, 80, 160 and 240 kg ha–1 y–1, and the two P levels (P0, P1) were 0 and 67 kg ha–1 y–1. Results of the first 5 years of fertilizer application are reported. Response to P was observed at all locations, and the response was statistically significant at 2 of the locations. There was no response to the application of nitrogen. The data suggest, however, that there is only a response to phosphorus when nitrogen is applied.  相似文献   

5.
N-fertilization dynamics and agronomic practices on a Vertisol in central Mexico were evaluated under irrigated conditions: (1) wheat-maize rotation with conventional tillage (CT) and burning of residues (W-M/CT/B, regional control); (2) wheat-beans rotation with CT and incorporation of residues into the soil (W-P/CT/I); (3) wheat-maize rotation with CT and incorporation of residues into the soil (W-M/CT/I); (4) maize-beans rotation bi-annual with CT and incorporation of residues into the soil (M-P/CT/Bi); and (5) wheat-maize, no tillage (NT) and residues left on the soil surface as mulch (W-M/NT/S). 15N and acetylene inhibition techniques were used to estimate N fertilizer efficiency and losses (N2 + N2O). Treatments received 240, 60, and 300 kg N ha−1 for spring maize, beans and winter wheat, as ammonium sulphate enriched with 5.468% atoms 15N excess. In the spring summer cycle, the fertilizer N recovery ranged from 27% for W-M/NT/S to 68% for M-P/CT/Bi. From the total N-fertilizer applied, only 3 to 9% remained in soil after harvest (W-M/NT/S and W-M/CT/I being the respective extremes). Unaccounted N-fertilizer ranged between 27 and 69%, the highest losses corresponding to W-M/NT/S treatment. Fertilizer N recovery in wheat varied from 19 to 37% (W-M/NT/S–W-M/CT/B). N-fertilizer remaining in soil was 14 to 24% (W-M/NT/S – W-M/CT/I). N2 and N2O emissions were higher in the no tillage system. Emissions ranged from 3 to 28 kg N ha−1 for W-P/CT/I and W-M/NT/S, respectively. The best treatments were those in which residues were incorporated resulting in N immobilization in top soil (0–15 cm), small N gas losses, and higher soil organic matter, these treatments were W-P/CT/I, W-M/CT/I.  相似文献   

6.
Nutrient Cycling in Agroecosystems - Nitrogen (N) fertilizer decision support systems that rely primarily on corn grain yield often perform poorly because year-to-year variations in net soil N...  相似文献   

7.
硅肥应成为我国农业发展中的新肥种   总被引:26,自引:0,他引:26  
冯元琦 《化肥工业》2000,27(4):9-11,36
扼要地介绍了硅肥的性质、发展概况和使用效果,并对我国发展硅肥提出了看法。  相似文献   

8.
Precise estimation of soil nitrogen (N) supply to corn (Zea mays L.) through N mineralization plays a key role in implementing N best management practices for economic consideration and environmental sustainability. To quantify soil N availability to corn during growing seasons, a series of in situ incubation experiments using the method of polyvinyl chloride tube attached with resin bag at the bottom were conducted on two typical agricultural soils in a cool and humid region of eastern Canada. Soil filled tubes were retrieved at 10-d intervals within 2 months after planting, and at 3- to 4-week intervals thereafter until corn harvest. Ammonium and nitrate in the soil and resin part of the incubation tubes were analyzed. In general, there was minimal NH4+-N with ranges from 1.5 to 7.3 kg N ha−1, which was declined in the first 30 d and fluctuated thereafter. Nitrate, the main form of mineral N, ranged from 20 to 157 kg N ha−1. In the first 20–50 d, main portion of the NO3-N was in the soil and thereafter in the resin, reflecting the movement of NO3 in the soil, which was affected by rainfall events and amount. Total mineralized N was affected by soil total N and weather conditions: There was more total mineralized N in the soil with higher total N, and rainy weather stimulated N mineralization. The relationship between the accumulated mineral N and accumulated growing degree-days (GDD) fitted well into first order kinetic models. The accumulated mineralized soil N during corn growing season ranged from 96 to 120 kg N ha−1, which accounted for 2–3% of soil total N. Corn plants took up 110–137 kg N ha−1. While the mineralized N and crop uptake were in the same magnitude, a quantitative relationship between them could not be established in this study.  相似文献   

9.
The application of nitrogen in a soil under agricultural production is subject to several pathways including de-nitrification, leaching and recovery by an annual crop. This is as well greatly influenced by the management practices, nitrogen source and soil conditions. The main objective of this study was to investigate the loss of nitrogen (N) through nitrous oxide (N2O) emissions and mineral N leaching and uptake by annual crop as influenced by the N source. The study was carried out at Kabete in Central Kenya. Measurements were taken during the second season after two seasons of repeated application of N as urea and Tithonia diversifolia (tithonia) leaves. Results obtained indicated that nitrous oxide (N2O) emissions at 4 weeks after planting were as high as 12.3 μg N m −2 h−1 for tithonia treatment and 2.9 μg N m−2 h−1 for urea treatment. Tithonia green biomass treatment was found to emit N2O at relatively higher rate compared to urea treatment. This was only evident during the fourth week after treatment application.Soil mineral N content at the end of the season increased down the profile. This was evident in the three treatments (urea, tithonia and control) investigated in the study. Urea treatment exhibited significantly higher mineral N content down the soil profile (9% of the applied N) compared to tithonia (0.6% of the applied N). This was attributed to the washing down of the nitrate-N from the topsoil accumulating in the lower layers of the soil profile. However, there was no significant difference in N content down the soil profile between tithonia treatment and the control. It could be concluded that there was no nitrate leaching in the tithonia treatment. Nitrogen recovery by the maize crop was higher in the urea treatment (76% of the applied N) as compared to tithonia treatment (55.5% of the applied N). This was also true for the residual mineral N in the soil at the end of the season which was about 7.8% of the applied N in the urea treatment and 5.2% in the tithonia treatment.From this study, it was therefore evident that although there is relatively lower N recovery by maize supplied with tithonia green biomass compared to maize supplied with urea, more nitrogen is being lost (through leaching) from the soil–plant system in the urea applied plots than in tithonia applied plots. However, a greater percentage (37.8%) of the tithonia-applied N could not be accounted for and might have been entrapped in the soil organic matter unlike urea-applied N whose greater percentage (92%) could be accounted for.  相似文献   

10.
Small plots (18 × 18 m) were treated with grids of cotton wicks that contained semiochemicals for adultDiabrotica barberi Smith and Lawrence, the northern corn rootworm (NCR). In plots treated with eugenol (350 g/hectare), NCR were attracted to point sources of the compound, but there were no significant changes in numbers of either NCR orD. virgifera virgifera LeConte, the western corn rootworm (WCR), found on plants in the plots. In plots treated with 12.5 mg/hectare of 8R-methyl-2R-decyl propanoate (2R,8R-MDP, the apparent female-produced sex pheromone of NCR and WCR), males of both species were attracted to point sources, but beetles did not congregate within treated plots. With racemic 2,8-MDP at 1.0 g/hectare, male WCR were attracted into plots, but NCR of both sexes were strongly repelled. In a separate study, capture of beetles at pheromone-baited traps declined when the surrounding area contained wicks that emitted racemic 2,8-MDP. In treated plots, male WCR were relatively inefficient at finding pheromone sources. With NCR, emigration from plots could account totally for the observed 3- to 10-fold reduction in catch at 0.01–1.0 g/hectare.Coleoptera: Chrysomelidae.Mention of a commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

11.
In temperate regions, legume-based green manures are a key element of organic rotations. However, specialized farms lack sufficient mobile organic fertilizers. To gain a better understanding of the N flows and the nitrogen (N) and phosphorus (P) fertilizer value of different clover-grass-based fertilizers (biogas digestate, compost, silage and fresh clover-grass obtained from clover-grass ley biomass), we assessed their fertilizer value. Nitrogen and P offtake by the ryegrass was used to assess the short-term effects. The data were completed using model calculations to assess the field-to-field N-transfer efficiencies and the overall N-transfer efficiencies. The greatest plant N offtake was achieved with digestates (64%) and the lowest from the compost (6%) and solid farmyard manure (14%). The mineralization rate was positively related to the NH4 +–N/total N ratio (P < 0.01, r2 = 0.82). The model calculations indicate that the overall short-term N-transfer efficiencies are driven by the field-to-field N-transfer efficiency and the field-to-crop transfer efficiency. However, in the long term, model calculations indicate that a high field-to-field N-transfer efficiency is the key strategic approach when aiming to achieve cropping systems with a high overall long-term N-transfer efficiency. Consequently, the results showed that aerobic decomposition (composting) significantly lowered field-to-field as well as field-to-crop N-transfer rates. The relative P use efficiency strongly differed among the fertilizers. In particular, freshly cut clover-grass and solid manure increased P availability and led to an increase of plant P offtake that was higher than the amount of P supplied.  相似文献   

12.
The response of corn (Zea mays L.) to broadcast P applications and to small amounts of fertilizer placed with the seed (fws) was measured in three field trials conducted for 10 years. Five rates of P (0, 11, 22, 45, and 90 kg ha–1 yr–1) were applied with and without 4.0-6.4-3.2 kg N, P, K ha–1 placed with the seed (fws) in a factorial arrangement of treatments. The fws treatment delayed emergence at all sites, reduced final emergence at two of the three sites, increased seedling dry weights at the 4 to 6 leaf stage and reduced the time to 50% silking at two of the three sites. Ear moisture content at harvest was reduced by fws at all sites which indicated that fws advanced maturity. The fws treatment increased grain yield at two of the sites by 1.3 and 2.3%, respectively. Broadcast P applications increased seedling dry weight at all sites but decreased the time to 50% silking only at one site. Broadcast P decreased ear moisture content and increased grain yield at two sites. There was a significant fws by broadcast P interaction in the most P deficient soil such that response to broadcast P was lessened by fws. The interaction was strongest during the early stages of growth and decreased with maturity resulting in no fws by broadcast P interaction for grain yield.  相似文献   

13.
The study herein reported presents information on the dietary fiber content of four food groups consumed in Central America. These are: cereals, grains and products; raw and processed beans; raw and processed vegetables, and starchy foods such as potatoes, cassava and plantain. Besides data on soluble and insoluble fiber, data on in vitro protein digestibility are included. The total dietary fiber content of the wheat flour products varied from 1.62 to 2.83% on a fresh basis, with the exception of whole-wheat bread, which showed a 7.57% content. The maize tortilla presented values ranging from 3.96 to 5.21% in respect to beans, and the values for cooked and raw beans fluctuated between 6.36 and 7.00%, independent of the color; however, fried beans reported values from 15.28 to 17.58%. Vegetables contained total dietary fiber values of 1.51 to 4.34, and the tubers, from 1.31 to 2.86%.  相似文献   

14.
Best management practices are recommended for improving fertilizer and soil N uptake efficiency and reducing N losses to the environment. Few year-round studies quantifying the combined effect of several management practices on environmental N losses have been carried out. This study was designed to assess crop productivity, N uptake from fertilizer and soil sources, and N losses, and to relate these variables to the fate of fertilizer 15N in a corn (Zea mays L.)-soybean (Glycine max L.)-winter wheat (Triticum aestivum L.) rotation managed under Best Management (BM) compared with conventional practices (CONV). The study was conducted from May 2000 to October 2004 at Elora, Ontario, Canada. Cumulative NO3 leaching loss was reduced by 51% from 133 kg N ha−1 in CONV to 68 kg N ha−1 in BM. About 70% of leaching loss occurred in corn years with fertilizer N directly contributing 11–16% to leaching in CONV and <4% in BM. High soil derived N leaching loss in CONV, which occurred mostly (about 80%) during November to April was attributable to 45–69% higher residual soil derived mineral N left at harvest, and on-going N mineralization during the over-winter period. Fertilizer N uptake efficiency (FNUE) was higher in BM (61% of applied) than in CONV (35% of applied) over corn and wheat years. Unaccounted gaseous losses of fertilizer N were reduced from 27% of applied in CONV to 8% of applied in BM. Yields were similar between BM and CONV (for corn: 2000 and 2003, wheat: 2002, soybean: 2004) or higher in BM (soybean: 2001). Results indicated that the use of judicious N rates in synchrony with plant N demand combined with other BMP (no-tillage, legume cover crops) improved FNUE by corn and wheat, while reducing both fertilizer and soil N losses without sacrificing yields.  相似文献   

15.
Environmental problems associated with raw manure application might bemitigated by chemically or biologically immobilizing and stabilizing solublephosphorus (P) forms. Composting poultry litter has been suggested as a means tostabilize soluble P biologically. The objectives of this study were to assessthe nutrient (N, P) value of different-age poultry litter (PL) compostsrelativeto raw poultry litter and commercial fertilizer and determine effects ofpoultrylitter and composts on corn (Zea mays) grain yield andnutrient uptake. The research was conducted for two years on Maryland'sEastern Shore. Six soil fertility treatments were applied annually to aMatapeake silt loam soil (Typic Hapludult): (1) a check without fertilizer, (2)NH4NO3 fertilizer control (168 kg Nha–1), (3) raw poultry litter (8.9 Mgha–1), (4) 15-month old poultry litter compost (68.7Mg ha–1), (5) 4-month old poultry litter compost(59 Mg ha–1) and (6) 1-month old poultry littercompost (64 Mg ha–1). We monitored changes inavailable soil NO3-N and P over the growing season and post harvest.We measured total aboveground biomass at tasseling and harvest and corn yield.We determined corn N and P uptake at tasseling.Patterns of available soil NO3-N were similar between raw PL-and NH4NO3 fertilizer-amended soils. LittleNO3-N was released from any of the PL composts in the first year ofstudy. The mature 15-month old compost mineralized significant NO3-Nonly after the second year of application. In contrast, available soil P washighest in plots amended with 15-month old compost, followed by raw PL-amendedplots. Immature composts immobilized soil P in the first year of study. Cornbiomass and yields were 30% higher in fertilizer and raw PL amendedplotscompared to yields in compost-amended treatments. Yields in compost-amendedplots were greater than those in the no-amendment control plots. Corn N and Puptake mirrored patterns of available soil NO3-N and P. Corn Puptakewas highest in plots amended with 15-month old compost and raw PL, even thoughother composts contained 1.5–2 times more total P than raw PL. There wasalinear relationship between amount of P added and available soil P, regardlessof source. The similar P availabilities from either raw or composted PL,coupledwith limited crop P uptake at high soil P concentrations, suggest that raw andcomposted PL should be applied to soils based on crop P requirements to avoidbuild-up of available soil P.  相似文献   

16.
Nutrient Cycling in Agroecosystems - Broadcast application of lime or phosphogypsum to suppress aluminum (Al) in soils can influence chemistry and fate of phosphorus (P) in natural environments....  相似文献   

17.
Dichloromethane extracts of germinating corn are significantly attractive to western corn rootworm larvae in choice tests with equal levels of carbon dioxide present on both sides of the choice. Two fractions that are significantly attractive and two fractions that are significantly repellent to larvae were isolated from these extracts of germinating corn by gas chromatography and silica gel chromatography. In a separate set of experiments, Porapak N was used to collect headspace volatiles from germinating corn; significantly more larvae were attracted to aliquots of these extracts in singlechoice tests without added carbon dioxide present than to solvent controls.Coleoptera: Chrysomelidae.  相似文献   

18.
The effects of frozen condition on the quality of three sweet corn ears (2038, 2010, 2004) and the pattern (Bonanza), were evaluated. Biometrics characteristics like ear size, ear diameter, row and kernel deep were measured as well as chemical and physical measurement in fresh and frozen states. The corn ears were frozen at -95 degrees C by 7 minutes. The yield and stability of the frozen ears were evaluated at 45 and 90 days of frozen storage (-18 degrees C). The average commercial yield as frozen corn ear for all the hybrids was 54.2%. The industry has a similar value range of 48% to 54%. The ear size average was 21.57 cm, row number was 15, ear diameter 45.54 mm and the kernel corn deep was 8.57 mm. All these measurements were found not different from commercial values found for the industry. All corn samples evaluated showed good stability despites the frozen processing and storage. Hybrid 2038 ranked higher in quality.  相似文献   

19.
No-till system (NTS) occupies 20 million hectares with grain crops in Brazil. However, calcium deficiency and aluminum toxicity can limit crop yields in many soils, and liming, associated to gypsum application, is an option for improving soil management. The objective of this study was to evaluate the effects of lime and gypsum application on the composition of soil water extracts of a clayey Rhodic Hapludox, cultivated with soybean under NTS. The experiment had a randomized complete block design with split-plots. The plots consisted of lime treatments (either a single rate of 4.5 t ha−1 or three annual rates of 1.5 t ha−1) surface-applied or incorporated at 0.2 m depth. The subplots received surface applications of gypsum (3, 6 and 9 t ha−1). Liming increased total calcium and magnesium concentrations and the magnesium free Form activity (aMg2+) in the water extracts. The effect of liming on Mg was observed at deeper layers of the soil profile. Gypsum increased total concentration and free forms activities at calcium (aCa2+) and sulfate, but decreased to magnesium in the 0.05–0.2 m soil layer. Part of Mg lost from these upper layers probably contributed to increased Mg in the subsoil (0.4–0.8 m). Free forms activities at the aluminum, calcium, magnesium and sulfate were lower than the total concentrations, mainly for aluminum. Ca and Mg concentrations in soybean leaf tissue were positively correlated to the aCa2+ and aMg2+ in the soil water extract. Soybean grain yield was negatively correlated to both Mn total concentration and activity (free form) in the soil water extract, but it was positively correlated to sulfate (total concentration and free form activity) in the subsoil layer and to the Ca total concentration in the upper layer (0–0.05 m). It is concluded that lime and gypsum ameliorate soybean grain yield under NTS.  相似文献   

20.
Contamination of groundwater with nitrate (NO3) derived from agricultural activity is serious problem in many countries worldwide. We investigated the annual (growing and non-growing seasons) behavior of NO3–N in the soil pore water of cropped Andosols and Gray lowland soils under eight crop groups (Type A: paddy rice, Type B: winter crops, Type C: vegetables 1, Type D: vegetables 2, Type E: vegetables and forages, Type F: legume crops, Type G: orchard, and Type H: grass). In the vegetable group (Type C) and the orchard group (Type G), which required large amounts of fertilizer and frequent top-dressing, NO3–N concentrations in the soil pore water were extremely high. In these agricultural lands, it was clear that the inorganic nitrogen produced by nitrification in surface soil was dominantly discharged from a depth of 90 cm in July to September. The descending order of the amount of discharge of NO3–N (N-discharge) was Type C > G > D > E > F > B > H > A for the Andosol, and Type G > C > F > D > E > B > H > A for the Gray lowland soil. If fertilization of the vegetables and orchard was performed based on the standard application amount, the annual average NO3–N concentration at a depth of 90 cm exceeds 10 mg L?1. To reduce the risk of groundwater contamination by NO3–N, we calculated the annual cumulative water flux density and annual cumulative NO3–N flux density. We examined the calculated fertilizer amount and proposed reduced fertilizer application amounts so that the annual average concentration of NO3–N in soil pore water would not exceed 10 mg L?1. The standard application amount of nitrogen fertilizer for vegetables should be reduced by 65.8 and 30.8 kg ha?1 in the Andosol and the Gray lowland soil, respectively. We also proposed that the standard application amount of nitrogen fertilizer be reduced by 59.9 and 40.7 kg ha?1 in Andosol orchards and Gray lowland soil orchards, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号