首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Atherosclerosis and postangioplasty restenosis may result from abnormal wound healing. The present studies report that normal human smooth muscle cells are growth inhibited by TGF-beta1, a potent wound healing agent, and show little induction of collagen synthesis to TGF-beta1, yet cells grown from human vascular lesions are growth stimulated by TGF-beta1 and markedly increase collagen synthesis. Both cell types increase plasminogen activator inhibitor-1 production, switch actin phenotypes in response to TGF-beta1, and produce similar levels of TGF-beta activity. Membrane cross-linking of 125I-TGF-beta1 indicates that normal human smooth muscle cells express type I, II, and III receptors. The type II receptor is strikingly decreased in lesion cells, with little change in the type I or III receptors. RT-PCR confirmed that the type II TGF-beta1 receptor mRNA is reduced in lesion cells. Transfection of the type II receptor into lesion cells restores the growth inhibitory response to TGF-beta1, implying that signaling remains responsive. Because TGF-beta1 is overexpressed in fibroproliferative vascular lesions, receptor-variant cells would be allowed to grow in a slow, but uncontrolled fashion, while overproducing extracellular matrix components. This TGF-beta1 receptor dysfunction may be relevant for atherosclerosis, restenosis and related fibroproliferative diseases.  相似文献   

2.
Keratinocytes play a critical role in re-epithelialization during wound healing, and alterations in keratinocyte proliferation and function are associated with the development of various skin diseases. Although it is well documented that TGF-beta has profound effects on keratinocyte growth and function, there is a paucity of information on the types, isoform specificity and complex formation of TGF-beta receptors on keratinocytes. Here, we report that in addition to the types I, II, and III TGF-beta receptors, early passage adult and neonatal human keratinocytes display a cell surface glycosylphosphatidylinositol (GPI)-anchored 150 kDa TGF-beta1 binding protein. The identities of the four proteins were confirmed on the basis of their affinity for TGF-beta isoforms, immunoprecipitation with specific anti-receptor antibodies, sensitivity to phosphatidylinositol specific phospholipase C and dithiothreitol, and 2-dimensional electrophoresis. Interestingly, the antitype I TGF-beta receptor antibody immunoprecipitated not only the type I receptor, but also the type II receptor and the 150 kDa component, suggesting that the 150 kDa component form heteromeric complexes with the signalling receptors. In addition, two-dimensional (nonreducing/reducing) electrophoresis confirmed the occurrence of a heterotrimeric complex consisting of the 150 kDa TGF-beta1 binding protein, the type II receptor, and the type I receptor. This technique also demonstrated the occurrence of types I and II heterodimers and type I homodimers of TGF-beta receptors on keratinocytes, supporting the heterotetrameric model of TGF-beta signalling proposed using mutant cells and cells transfected to overexpress these receptors. The keratinocytes responded to TGF-beta by markedly downregulating all four TGF-beta binding proteins and by potently inhibiting DNA synthesis. The demonstration that the 150 kDa GPI-anchored TGF-beta1 binding protein forms a heteromeric complex with the TGF-beta signalling receptors suggests that this GPI-anchored protein may modify TGF-beta signalling in human keratinocytes.  相似文献   

3.
4.
5.
Transforming growth factor-beta (TGF-beta) affects cellular proliferation, differentiation, and interaction with the extracellular matrix primarily through interaction with the type I and type II TGF-beta receptors. The type II receptors for TGF-beta and activin contain putative serine-threonine kinase domains. A murine serine-threonine kinase receptor, Tsk 7L, was cloned that shared a conserved extracellular domain with the type II TGF-beta receptor. Overexpression of Tsk 7L alone did not increase cell surface binding of TGF-beta, but coexpression with the type II TGF-beta receptor caused TGF-beta to bind to Tsk 7L, which had the size of the type I TGF-beta receptor. Overexpression of Tsk 7L inhibited binding of TGF-beta to the type II receptor in a dominant negative fashion. Combinatorial interactions and stoichiometric ratios between the type I and II receptors may therefore determine the extent of TGF-beta binding and the resulting biological activities.  相似文献   

6.
7.
PURPOSE: Production of extracellular matrix (ECM) by corneal endothelial cells is related to physiologic functions and pathologic conditions and is regulated by many cytokines, including transforming growth factor-beta (TGF-beta). In this study, the molecular mechanism of ECM production regulation by TGF-beta was investigated in cultured corneal endothelial cells. METHODS: The production of ECM components (laminin and fibronectin) was detected in cultured corneal endothelial cells by western blot analysis. To determine the signal transduction pathways, mutant TGF-beta type I receptor (TbetaR-I) and/or Smad protein family members (intracellular signal transducers in TGF-beta signaling) were overexpressed by transfecting their cDNA into the cultured cells, and the effects on ECM production were observed. RESULTS: The production of laminin and fibronectin was stimulated by treatment with TGF-beta1 or TGF-beta2. After transient transfection of cDNA of the constitutively active (CA) mutant of TbetaR-I, the production of laminin and fibronectin was stimulated even in the absence of TGF-beta. The transfection of the dominant negative mutant of TbetaR-I counteracted the effects of TGF-beta. These results confirm that TGF-beta directly stimulates ECM production from corneal endothelial cells through TbetaR-I. The ECM production stimulation by TGF-beta or CA TbetaR-I was accelerated by the overexpression of Smad2, Smad3, and/or Smad4 and inhibited by that of Smad7. These results show that TGF-beta signals connected to ECM production are regulated by Smad family members, located downstream of TbetaR-I. CONCLUSIONS: The results of this study show that TGF-beta stimulates ECM production from corneal endothelial cells through TbetaR-I and Smad family transducers.  相似文献   

8.
TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.  相似文献   

9.
Bone marrow stromal cells are required for sustained haemopoiesis. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine present in the bone marrow microenvironment which regulates the expression of several cytokines, cytokine receptors and cell adhesion elements. The TGF-beta receptors type I and II, and endoglin, mediate TGF-beta1 binding to the membrane of human bone marrow stromal cells. [125I]TGF-beta1-affinity labelling experiments showed that three different anti-endoglin monoclonal antibodies co-immunoprecipitated a 68 kD TGF-beta1-labelled polypeptide together with TGF-beta1/endoglin complexes. Here, we have shown that the 68 kD receptor corresponds to the type I receptor, indicating that endoglin and the type I receptor associate on the membrane of these cells upon ligand binding. The expression of endoglin by stromal cells was found to be up-regulated by TGF-beta1, but not by IL-1beta. The association of endoglin with signalling components of the TGF-beta receptor system on the membrane of bone marrow stromal cells might modulate TGF-beta1 access to the signalling pathways, and therefore it could regulate TGF-beta1-mediated stromal cellular responses.  相似文献   

10.
To determine whether a functional type II receptor of transforming growth factor beta (TGF-beta) is required to mediate the growth inhibitory effect of TGF-beta on the skin in vivo, we have generated transgenic mice that overexpress a dominant negative-type II TGF-beta receptor (delta beta RII) in the epidermis. The delta beta RII mice exhibited a thickened and wrinkled skin, and histologically the epidermis was markedly hyperplastic and hyperkeratotic. In vivo labeling with BrdUrd showed a 2.5-fold increase in the labeling index over controls, with labeled nuclei occurring in both basal and suprabasal cells of transgenic epidermis. In heterozygotes, this skin phenotype gradually diminished, and by 10-14 days after birth the transgenic mice were indistinguishable from their normal siblings. However, when F1 mice were mated to homozygosity, perinatal lethality occurred due to the severe hyperkeratotic phenotype, which restricted movement. Cultured primary keratinocytes from delta beta RII mice also exhibited an increased rate of growth in comparison with nontransgenic controls, and were resistant to TGF-beta-induced growth inhibition. These data document the role of the type II TGF-beta receptor in mediating TGF-beta-induced growth inhibition of the epidermis in vivo and in maintenance of epidermal homeostasis.  相似文献   

11.
Enterochromaffin-like (ECL) cells are histamine-containing endocrine cells in the gastric epithelium that show increased density during chronic atrophic gastritis. The current study determined cell number and apoptosis of isolated rat ECL cells in response to several growth factors. Isolated ECL cells from fundic mucosa (enrichment >90%) were grown in serum-free medium over 2-5 days. Cell number was determined by mitochondrial formazan production; apoptosis was measured by Tdt-mediated dUTP nick end labeling reaction and DNA fragmentation-based enzyme-linked immunosorbent assay. Immunocytochemistry and RT-PCR demonstrated the presence of epidermal growth factor receptor, neuronal growth factor receptor (type 1), and fibroblast growth factor (FGF) receptor (type 1). Gastrin (EC50, approximately 2 pM), transforming growth factor-alpha (TGF alpha; 10-30 ng/ml), and basic FGF (bFGF; 1-10 ng/ml) increased the total number of cultured ECL cells. bFGF augmented the gastrin (1 pM)-induced response. Beta-neuronal growth factor (10 ng/ml) and bFGF (2 ng/ml) decreased the programed death of ECL cells. Interleukin-1beta (100 pg/ml, 24 h) stimulated apoptosis 2- to 3-fold in ECL cells, and simultaneous incubation with TGF alpha (20 ng/ml) or bFGF (2 ng/ml) significantly inhibited this effect. ECL cells express specific receptors for gastrin, epidermal growth factor, neuronal growth factor, and FGF. bFGF prolonged ECL cell survival by inhibiting spontaneous apoptosis. Our data further indicate that TGF alpha and bFGF increase ECL cell number by inhibiting cytokine-induced programed cell death.  相似文献   

12.
Post-mitotic, human neurons (hNT cells) which have a phenotype similar to that of terminally differentiated neurons of the central nervous system were generated by treating the NT2/D1 human teratocarcinoma cell line with retinoic acid. Treatment of both hNT and NT2/D1 cells with 10(-5) M beta-amyloid peptide fragment 25-35 (A beta P) for 24 h resulted in a decrease in cell viability as determined by MTT incorporation and Trypan blue exclusion, and also induced an apoptotic morphology in hNT cells. Pre-treatment of cells for 24 h with 10 ng/ml TGF-beta 1 or 2 before addition of A beta P reduced the apoptotic morphology of hNT cells and increased cell viability in hNT cells, but not in NT2/D1 cells. Results of RT-PCR, immunohistochemistry and analysis of receptor cross-linking of [125I]TGF-beta 1 to the cell membrane, all showed that the TGF-beta type II receptor is expressed by hNT cells, but not NT2/D1 cells. These results suggest that TGF-beta can protect human, terminally differentiated, TGF-beta type II receptor-positive neurons from A beta P toxicity. We propose that the increased expression of TGF-beta in brains of patients with Alzheimer's disease may offer some degree of neuroprotection if neurons also express a functional TGF-beta type II receptor.  相似文献   

13.
Using a dominant-negative mutant receptor (DNR) approach in transgenic mice, we have functionally inactivated transforming growth factor-beta (TGF-beta) signaling in select epithelial cells. The dominant-negative mutant type II TGF-beta receptor blocked signaling by all three TGF-beta isoforms in primary hepatocyte and pancreatic acinar cell cultures generated from transgenic mice, as demonstrated by the loss of growth inhibitory and gene induction responses. However, it had no effect on signaling by activin, the closest TGF-beta family member. DNR transgenic mice showed increased proliferation of pancreatic acinar cells and severely perturbed acinar differentiation. These results indicate that TGF-beta negatively controls growth of acinar cells and is essential for the maintenance of a differentiated acinar phenotype in the exocrine pancreas in vivo. In contrast, such abnormalities were not observed in the liver. Additional abnormalities in the pancreas included fibrosis, neoangiogenesis and mild macrophage infiltration, and these were associated with a marked up-regulation of TGF-beta expression in transgenic acinar cells. This transgenic model of targeted functional inactivation of TGF-beta signaling provides insights into mechanisms whereby loss of TGF-beta responsiveness might promote the carcinogenic process, both through direct effects on cell proliferation, and indirectly through up-regulation of TGF-betas with associated paracrine effects on stromal compartments.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) signals through a heteromeric complex of related type I and type II serine/threonine kinase receptors. In Mv1Lu cells the type I receptor TbetaRI mediates TGF-beta-induced gene expression and growth inhibition, while the closely related type I receptors Tsk7L and TSR1 are inactive in these responses. Using chimeras between TbetaRI and Tsk7L or TSR1, we have defined the structural requirements for TGF-beta signaling by TbetaRI. The extracellular/transmembrane or cytoplasmic domains of TbetaRI and Tsk7L were functionally not equivalent. The juxtamembrane domain, including the GS motif, and most regions in the kinase domain can functionally substitute for each other, but the alphaC-beta4-beta5 region from kinase subdomains III to V conferred a distinct signaling ability. Replacement of this sequence in TbetaRI by the corresponding domain of Tsk7L inactivated TGF-beta signaling, whereas its introduction into Tsk7L conferred TGF-beta signaling. The differential signaling associated with this region was narrowed down to a sequence of eight amino acids, the L45 loop, which is exposed in the three-dimensional kinase structure and diverges highly between TbetaRI and Tsk7L or TSR1. Replacement of the L45 sequence in Tsk7L with that of TbetaRI conferred TGF-beta responsiveness to the Tsk7L cytoplasmic domain in Mv1Lu cells. Thus, the L45 sequence between kinase subdomains IV and V specifies TGF-beta responsiveness of the type I receptor.  相似文献   

15.
BACKGROUND: Transforming growth factor Beta (TGF-Beta) arrests many cell types in the G1 phase of the cell and upregulates plasminogen activator inhibitor 1 (PAI-1). The type 1 (TGF-Beta RI) an II (TGF-Beta RII) TGF-Beta receptors mediate these and other effects of TGF-Beta on target cells. TGF-Beta initially binds to TGF-Beta RII and subsequently TGF-Beta RI is recruited to form a heteromeric complex. TGF-Beta RI phosphorylates the downstream effectors Smad2 and Smad3, leading to their translocation into the nucleus. Here, we explored the role of receptor oligomerization in TGF-Beta signaling. RESULTS: We constructed fusion proteins containing receptor cytoplasmic tails linked to binding domains for small-molecule dimerizers. In COS-1 cells, recruitment of a soluble TGF-Beta RII tail to a myristoylated TGF-Beta RI tail promoted Smad2 nuclear translocation. In mink lung cells, homo-oligomerization of a myristoylated TGF-Beta Ri tail in presence of a myristoylated TGF-Beta RII tail activated the PAI-1 promoter. Oligomerization of an acidic mutant of the TGF-Beta RI tail in absence of TGF-Beta RII activated the PAI-A promoter and inhibited the growth of mink lung cells. CONCLUSIONS: Non-toxic, small molecules designed to oligomerize cytoplasmic tails of TGF-Beta receptors at the plasma membrane can activate TGF-Beta signaling. Although TGF-Beta normally signals through two receptors that are both necessary for signaling, in one small-molecule system, a dimerizer activates signaling through a single type of receptor that is sufficient to induce TGF-Beta signaling. These methods of activating TGF-Beta signaling could be extended to signaling pathways of other TGF-Beta superfamily members such as activin and the bone morphogenetic proteins.  相似文献   

16.
The type V transforming growth factor beta (TGF-beta) is a 400-kDa nonproteoglycan membrane protein that co-expresses with the type I, type II, and type III TGF-beta receptors in most cell types. The type V TGF-beta receptor exhibits a Ser/Thr-specific protein kinase activity with distinct substrate specificity (Liu, Q., Huang, S. S., and Huang, J. (1994) J. Biol. Chem. 269, 9221-9226). In mink lung epithelial cells, the type V TGF-beta receptor was found to form heterocomplexes with the type I TGF-beta receptor by immunoprecipitation with antiserum to the type V TGF-beta receptor after 125I-TGF-beta affinity labeling or Trans35S-label metabolic labeling of the cells. The kinase activity of the type V TGF-beta receptor was stimulated after treatment of mink lung epithelial cells with TGF-beta. TGF-beta stimulation resulted in the growth inhibition of wild-type mink lung epithelial cells and to a lesser extent of the type I and type II TGF-beta receptor-defective mutants, although higher concentrations of TGF-beta were required for the growth inhibition of these mutants. TGF-beta was unable to induce growth inhibition in human colorectal carcinoma cells lacking the type V TGF-beta receptor but expressing the type I and type II TGF-beta receptors. These results suggest that the type V TGF-beta receptor can mediate the TGF-beta-induced growth inhibitory response in the absence of the type I or type II TGF-beta receptor. These results also support the hypothesis that loss of the type V TGF-beta receptor may contribute to the malignancy of certain carcinoma cells.  相似文献   

17.
18.
19.
Mutations of the transforming growth factor-beta type II receptor (TGF-beta RII) gene have been detected in several human cancers. However, mutation analysis of coding sequences of TGF-beta RII in gastric carcinomas has not yet been fully elucidated. We performed PCR-SSCP analysis and direct DNA sequencing of the entire coding region of TGF- RII in 38 human sporadic gastric cancers and 8 gastric cancer cell lines. Mutations of the TGF-beta RII were detected in two tumors and three cell lines. Two tumors had one base deletion in the polyadenine tract in exon 3, the cystein-rich extracellular domain. Three cell lines had a silent mutation in the kinase domain located in exon 4. Polymorphisms were detected in introns 2 and 3. An a/g polymorphism was observed at the seventh base in intron 2 and an a/t polymorphism was observed at the fourth to last base in intron 3. There were no mutations in exons 1, 2, 5, 6 and 7. These results indicate that the polyadenine tract in the TGF-beta RII is a mutational hot spot in human gastric cancer. However, these results also suggest that mutations of the gene are rare events in human sporadic gastric cancer.  相似文献   

20.
Proteins in the transforming growth factor-beta (TGF-beta) superfamily exert their effects by forming heteromeric complexes of their type I and type II serine/threonine kinase receptors. The type I and type II receptors form distinct subgroups in the serine/threonine kinase receptor family based on the sequences of the kinase domains and the presence of a highly conserved region called the GS domain (or type I box) located just N-terminal to the kinase domain in the type I receptors. Recent studies have revealed that upon TGF-beta binding several serine and threonine residues in the GS domain of TGF-beta type I receptor (T beta R-I) are phosphorylated by TGF-beta type II receptor (T beta R-II) and that the phosphorylation of GS domain is essential for TGF-beta signaling. Here we investigated the role of cytoplasmic juxtamembrane region located between the transmembrane domain and the GS domain of T beta R-I by mutational analyses using mutant mink lung epithelial cells, which lack endogenous T beta R-I. Upon transfection, wild-type T beta R-I restored the TGF-beta signals for growth inhibition and production of plasminogen activator inhibitor-1 (PAI-1) and fibronectin. A deletion mutant, T beta R-I/JD1(delta 150-181), which lacks the juxtamembrane region preceding the GS domain, bound TGF-beta in concert with T beta R-II and transduced a signal leading to production of PAI-I but not growth inhibition. Recombinant receptors with mutations that change serine 172 to alanine (S172A) or threonine 176 to valine (T176V) were similar to wild-type T beta R-I in their abilities to bind TGF-beta, formed complexes with T beta R-II, and transduced a signal for PAI-1 and fibronectin. Similar to T beta R-I/JD1 (delta 150-181), however, these missence mutant receptors were impaired to mediate a growth inhibitory signal. These observations indicate that serine 172 and threonine 176 of T beta R-I are dispensable for extracellular matrix protein production but essential to the growth inhibition by TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号