首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using α-Al2O3 , Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (Wa ), bulk density (Db ), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3 , and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.  相似文献   

2.
Influence of aluminum addition on the structures and properties of SiO2-B2O3-Al2O3-CaO vitrified bond at low sintering temperature and high strength was discussed. FTIR and XRD analyses were used to characterize the structures of the basic vitrified bond with different contents of aluminum. The bending strength and the thermal expansion coefficients were also tested. Meanwhile, the microstructures of composite specimens at sintering temperature of 660 °C were observed by scanning electron microscope (SEM). The experimental results showed that the properties of vitrified bond with 1wt% aluminum were improved significantly, where the bending strength, Rockwell hardness, and thermal expansion coefficient of the vitrified bond reached 132 MPa, 63 HRB, and 6.73×10-6 °C-1, respectively.  相似文献   

3.
A cordierite was synthesized from calcined bauxite, talcum, and quartz. The properties and microstructure of the cordierite sintered samples were characterized by Archimedes’ method, thermal dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and so on. The experimental results showed that calcined bauxite could broaden the range of synthesizing temperature from 1300 °C to 1420 °C and get pure cordierite. The bulk density and linear thermal expansion coeffi cient of the sample synthesized at 1420 °C for 2 h were 1.97 g·cm?3 and 2.1×10?6 °C?1, respectively. The XRD analysis showed that the major crystalline phase was α-cordierite with almost no glassy matters, the SEM images illustrated a small vent hole and the size were 5–100 μm, the well-grown hexagonal and granular cordierite grains had the sizes distributed among 0.1–8 μm, and providing high mechanical strength and lower linear thermal expansion coeffi cient.  相似文献   

4.
Aiming at developing novel microwave-transparent ceramics with low dielectric loss,high thermal conductivity and high strength,Si3N4-AlN(30%,mass fraction) composite ceramics with La2O3 as sintering additive were prepared by hot-pressing at 1 800 °C and subsequently annealed at 1 450 °C and 1 850 °C for 2 h and 4 h,respectively.The materials were characterized by XRD and SEM.The effect of annealing process on the phase composition,sintering performance,microstructure,bending strength,dielectric loss and the...  相似文献   

5.
以合成莫来石和合成堇青石为原料,采用常压烧结制备了太阳能热发电用堇青石-莫来石复相陶瓷。研究了质量比、烧结温度等对样品的吸水率、气孔率、体积密度、抗折强度及抗热震性等的影响。结果发现,最优配方是1 440℃烧结的A3样品,堇青石和莫来石质量比为7∶3,气孔率为0.30%,吸水率为0.12%,体积密度为2.487g/cm3,抗折强度达68.49MPa,抗热震循环(室温~1 100℃)30次无裂纹。通过XRD和SEM分析发现样品由低温堇青石、高温堇青石和莫来石组成。该复相陶瓷可作为潜在的太阳能输热管道材料。  相似文献   

6.
4.25Cu-0.75Ni/NiFe2O4 cermets were prepared by doping NiFe2O4 ceramic matrix with the mixed powders of Cu and Ni or Cu-Ni alloy powder as the electrical conducting metallic elements. The effects of technological parameters, such as the adding modes of metallic elements, the ball milling time, the sintering time and the sintering temperature, on the relative density and resistivity of the cermets were studied. The results show that the resistivity of 4.25Cu-0.75Ni/NiFe2O4 cermets decreases with increasing temperature, and has a turning point at 590 °C, which is similar to that of NiFe2O4 ceramic. The sintering temperature and adding modes of metallic elements have a great influence on the properties of 4.25Cu-0.75Ni/NiFe2O4 cermets. When the sintering temperature increases from 1200 °C to 1300 °C, the relative density increases from 89.86% to 95.33%, and the resistivity at 960 °C decreases from 0.11 Ω · cm to 0.03 Ω · cm, respectively. When the metallic elements are added with the mixed powders of Cu and Ni, the cermets of finely and uniformly dispersed metallic phase, high density and electric conductivity are obtained. The relative density and resistivity at 960 °C are 90.23% and 0.04 Ω · cm respectively for the cermet samples sintered at 1200 °C for 2 h, which are both better than those of the cermets prepared under the same technique conditions but with the metallic elements added as 85Cu-15Ni alloy powders. Foundation item: Project (G1999064903) supported by the National Key Fundamental Research and Development Program of China; project(2001AA335013) supported by the National High Technology Research and Development Program of China; project (50204014) supported by the National Natural Science Foundation of China  相似文献   

7.
In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment,3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350 ℃,1 400 ℃,1 450 ℃,1 500 ℃,respectively,then were treated by soaking in artificial saliva(65 ℃,pH=7)for two months.The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved(P<0.05),while those sintered at 1 400 ℃-1 500 ℃ revealed a small amount of phase transformation and insignifi cant mechanical reinforcement(P>0.05).No micro-cracks were detected but increment in lattice volume was found in all specimens.Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.  相似文献   

8.
The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200–1 400 °C by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CuO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CuO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials.  相似文献   

9.
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.  相似文献   

10.
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900 °C, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of ɛ r=24.5, Q×f =24 622 GHz, τ f=4.2×10−6 °C−1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900 °C for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.  相似文献   

11.
The effect of ZnO-B2O3(ZB) glass addition on the sintering behavior, microstructures and microwave dielectric properties of BaO-Nd2O3-TiO2-Bi2O3 (BNTB) system was investigated with the aid of X-ray diffraction, scanning electron microscopy and capacitance meter. It is found that the ZB glass addition, acting as a sintering aid, can effectively lower the sintering temperature of BNTB system to 850 °C. The dielectric constant of BNTB-ZB ceramics increases with the increase of soaking time and the value of dielectric loss decreased with increasing soak time. The optical dielectric properties at 1 GHz of ɛ=74, tan δ=4×10−4, and TCC=25 ppm/°c were obtained for the BNTB system doped with 25 wt% ZB glass sintered at 850 °C for 2 h, representing that the BNTB-ZB ceramics could be promising for multilayer low temperature co-fired ceramics applications.  相似文献   

12.
La0.7 Ca0.3 CrO3 powder consisting of superfine and uniform particles ( 100-200 nm ) were synthesized using a glycine-nitrate process ( GNP ). The sintering and electronic conducting properties of La0.7 Ca0.3 CrO3 were invetigated in the sintering temperature range of 1 200-1 450 ℃. The desired morphology of the powder significantly improved its sinterability. La0.7 Ca0.3 CrO3 ceramics sintered at 1 250-1 450 ℃ show high relative densities above 95 % . The ceramics sintered at 1 250-1 400 ℃ have very similar electronic conduct- ing properties, providing electronic conductivities around 55 Ω^-1 cm^-1 at a measuring temperature of 800 ℃ . Further increasing the sintering temperature to 1450 ℃ led to an apparent degradation of electronic conducting properties. This research demonstrates the advantage of the GNP in producing La0.7 Ca0.3 CrO3 with respect to the enhanced sintering properties and superior electronic conducting properties.  相似文献   

13.
A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF2 as sintering aid were prepared by spark plasma sintered at 1700-1850 ℃ for 5 min.The addition of CaF2 effectively lowered the sintering temperature and promoted the densification of AlN-BN composites.With the increase of sintering temperature,the density increased,and the contiguity of AlN grains enhanced in AlN-BN composites.Thermal conductivity of AlN-BN composites increased with the increase in CaF2 content and sintering temperature,and there is a maximum value of 78.6 W·m^-1·K^-1 when the sample with 3wt% CaF2 sintered at 1800 ℃.  相似文献   

14.
Pure alumina ceramic tube and 95 alumina ceramic(the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.  相似文献   

15.
The effects of glass frit on the sintering and electric properties of PMN-PT textured ceramics were investigated. The glass frits, including PbO, Bi2O3 and ZnO, were selected since liquid phase sintering lowered the PMN-PT sintering temperature. The piezoelectric properties of PMN-PT ceramics with glass frit addition are strongly dependent on the densification. The addition of glass frits into PMN-PT matrix reduced the sintering temperature to 1 100 ℃ instead of 1 150 ℃ for samples without glass. The piezoelectric coefficients (d33) of PMN-PT textured ceramics achieved 568 pc/N with 1 wt% excess PbO.  相似文献   

16.
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, α-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnO2 on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J·(g·K)-1, thermal conductivity of 9.05 W·(m·K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 °C to RT).  相似文献   

17.
Hexagonal boron nitride ceramic (h-BN) based on the nitridation of B powders was obtained by reaction sintering method. The effects of sintering temperature on the mechanical properties and microstructure of the resultant products were investigated and the reaction mechanism was discussed. Results showed that the reaction between B and N2 occurred vigorously at temperatures ranging from 1 000 °C to 1 300 °C, which resulted in the generation of t-BN. When the temperature exceeded 1 450 °C, transformation from t-BN to h-BN began to occur. As the sintering temperature increased, the spherical particles of t-BN gradually transformed into fine sheet particles of h-BN. These particles subsequently displayed a compact arrangement to achieve a more uniform microstructure, thereby increasing the strength.  相似文献   

18.
Liquid ball-milling dispersant method was used to prepare the ZrO2-doped carbon laminations from mesocarbon microbeads(MCMBs). After sintering at 1 300 ℃ in nitrogen atmosphere, the effect of ZrO2 concentration on sintering behavior, electric conductivity as well as bending strength of the carbon laminations was investigated in detail. The results showed that the volumetric shrinkage rate of the carbon laminations decreased from 38.2% to 30.9% when the ZrO2 concentration in raw materials varied from 0 to 16...  相似文献   

19.
The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 °C for 0.5–5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cm2 decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 115 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0–3.0 h considering both nonlinear electrical behavior and dielectric properties.  相似文献   

20.
The microstructure and the electrical, thermal, friction, and mechanical properties of Cu/Ti2AlC fabricated by hot-pressing at 900 °C for 1 h were investigated in the present work. Microstructural observations have shown that the plate-like Ti2AlC grains distribute irregularly in the network of Cu grains, and well-structured, crack-free bonds between the layers. With the increase in the content of Ti2AlC from layer A to layer D, the electrical resistivity increases from 1.381×10-7 Ω·m to 1.918 ×10-7 Ω·m, the hardness increases from about 980.27 MPa to about 2196.01 MPa, and the friction coefficient from above 0.20 reduces to about 0.15. Oxidation rate increases with the increases of temperature. Exfoliation was obviously observed on the surface of oxidation layer A. The surface of layer D was still intact and the spalling and other defects were not found. The mass decreases in the acid solution, and increases in the alkaline solution. The largest corrosion rate is found in 6.5% HNO3 or 4% NaOH solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号