首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The study investigates the relative degree and timing of cortical activation in parietal, temporal, and frontal regions during simple arithmetic tasks in children who experience math difficulties. Real-time brain activity was measured with magnetoencephalography during simple addition and numerosity judgments in students with math difficulties and average or above average reading skills (MD group, N = 14), students with below average scores on both math and basic reading tests (MD/RD group, N = 16) and students with above average scores on standardized math tests (control group, N = 25). Children with MD showed increased degree of neurophysiological activity in inferior and superior parietal regions in the right hemisphere compared to both controls and MD/RD students. Left hemisphere inferior parietal regions did not show the expected task-related changes and showed activity at a significant temporal delay. MD students also showed increased early engagement of prefrontal cortices. Taken together, these findings may indicate increased reliance on a network of right hemisphere parietal (and possibly frontal areas as well) for simple math calculations in students who experience math difficulties but perform within normal range in reading. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Intervention-related changes in spatiotemporal profiles of regional brain activation were examined by whole-head magnetoencephalography in 15 children with severe reading difficulties who had failed to show adequate progress to quality reading instruction during Grade 1. Intensive intervention initially focused on phonological decoding skills (for 8 weeks) and, during the subsequent 8 weeks, on rapid word recognition ability. Clinically significant improvement in reading skills was noted in 8 children who showed "normalizing" changes in their spatiotemporal profiles of regional brain activity (increased duration of activity in the left temporoparietal region and a shift in the relative timing of activity in temporoparietal and inferior frontal regions). Seven children who demonstrated "compensatory" changes in brain activity (increased duration of activity in the right temporoparietal region and frontal areas, bilaterally) did not show adequate response to intervention. Nonimpaired readers did not show systematic changes in brain activity across visits. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Tested whether different neurological regions subserved the conceptual and perceptual memory components by using positron emission tomography (PET). Regional cerebral blood flow (RCBF) of 14 Ss (mean age 25 yrs) during 2 conceptual tasks of semantic cued recall and semantic association was compared to a control condition in which Ss made semantic associations to nonstudied words. RCBF during 2 perceptual tasks of word fragment cued recall and word fragment completion was also compared to a word fragment nonstudied control condition. There were clear dissociations in RCBF that reflected differences in brain regions subserving the 2 types of memory processes. Conceptual processing produced more activation in the left frontal and temporal cortex and the lateral aspect of the bilateral inferior parietal lobule. Perceptual memory processing activated the right frontal and temporal cortex and the bilateral posterior areas. (French abstract) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The functional anatomy of the interactions between spoken language and visual mental imagery was investigated with PET in eight normal volunteers during a series of three conditions: listening to concrete word definitions and generating their mental images (CONC), listening to abstract word definitions (ABST) and silent REST. The CONC task specifically elicited activations of the bilateral inferior temporal gyri, of the left premotor and left prefrontal regions, while activations in the bilateral superior temporal gyri were smaller than during the ABST task, during which an additional activation of the anterior part of the right middle temporal gyrus was observed. No activation of the occipital areas was observed during the CONC task when compared either to the REST or to the ABST task. The present study demonstrates that a network including part of the bilateral ventral stream and the frontal working memory areas is recruited when mental imagery of concrete words is performed on the basis of continuous spoken language.  相似文献   

5.
Auditory and visual word processing studied with fMRI   总被引:1,自引:0,他引:1  
Brain activations associated with semantic processing of visual and auditory words were investigated using functional magnetic resonance imaging (fMRI). For each form of word presentation, subjects performed two tasks: one semantic, and one nonsemantic. The semantic task was identical for both auditory and visual presentation: single words were presented and subjects determined whether the word was concrete or abstract. In the nonsemantic task for auditory words, subjects determined whether the word had one syllable or multiple syllables. In the nonsemantic task for visual words, subjects determined whether the word was presented in lower case or upper case. There was considerable overlap in where auditory and visual word semantic processing occurred. Visual and auditory semantic tasks both activated the left inferior frontal (BA 45), bilateral anterior prefrontal (BA 10, 46), and left premotor regions (BA 6) and anterior SMA (BA 6, 8). Left posterior temporal (middle temporal and fusiform gyrus) and predominantly right-sided cerebellar activations were observed during the auditory semantic task but were not above threshold during visual word presentation. The data, when averaged across subjects, did not show obligatory activation of left inferior frontal and temporal language areas during nonsemantic word tasks. Individual subjects showed differences in the activation of the inferior frontal region while performing the same task, even though they showed similar response latency and accuracy.  相似文献   

6.
To investigate the functional neuroanatomy associated with retrieving semantic and episodic memories, we measured changes in regional cerebral blood flow (rCBF) with positron emission tomography (PET) while subjects generated single word responses to achromatic line drawings of objects. During separate scans, subjects either named each object, retrieved a commonly associated color of each object (semantic condition), or recalled a previously studied uncommon color of each object (episodic condition). Subjects were also scanned while staring at visual noise patterns to provide a low level perceptual baseline. Relative to the low level baseline, all three conditions revealed bilateral activations of posterior regions of the temporal lobes, cerebellum, and left lateralized activations in frontal regions. Retrieving semantic information, as compared to object naming, activated left inferior temporal, left superior parietal, and left frontal cortices. In addition, small regions of right frontal cortex were activated. Retrieving episodic information, as compared to object naming, activated bilateral medial parietal cortex, bilateral retrosplenial cortex, right frontal cortex, thalamus, and cerebellum. Direct comparison of the semantic and episodic conditions revealed bilateral activation in temporal and frontal lobes in the semantic task (left greater than right), and activation in medial parietal cortex, retrosplenial cortex, thalamus, and cerebellum (but not right frontal regions) in the episodic task. These results support the assertion that distinct neural structures mediate semantic and episodic memory retrieval. However, they also raise questions regarding the specific roles of left temporal and right frontal cortices during episodic memory retrieval, in particular.  相似文献   

7.
This study shows that incorrect responses are preceded by different EEG characteristics than correct responses, and that these differences appear in specific brain regions that participate in each particular task. EEGs were recorded in children during three different tasks: color discrimination (CDT), verbal working memory (VWM), and word categorization task (WCT). EEG segments previous to the presentation of the stimulus were analysed. Incorrect responses were preceded by lower EEG power values at 7.8 Hz in posterior temporal and right parietal leads in CDT, 8.59 and 9.36 Hz in frontal areas in VWM, and 10.72 Hz in the left hemisphere in WCT. In the former task > 1.56 Hz power in frontal areas prior to an incorrect response was also observed.  相似文献   

8.
An impaired ability to recite highly automated word strings (e.g., the names of the months of the year) in reverse order concomitant with preserved production of the conventional sequence has been considered a salient sign of frontal lobe dysfunction. Using functional magnetic resonance imaging (fMRI), the spatial and temporal pattern of brain activation during covert performance of these tasks was evaluated in healthy subjects. As compared to the response obtained during forward recitation, re-sequencing of the word string yielded additional activation of the bilateral middle and inferior frontal gyri, the posterior parietal cortex and the left anterior cingulate gyrus. The prefrontal responses are in accordance with the clinical findings referred to. However, the set of activated areas, as a whole, presumably reflects contribution of the various components of the working memory system to the sequencing of word strings. During successive periods of task administration, subjects showed a linear increase of production speed. Analysis of corresponding dynamic changes of regional hemodynamic responses revealed a significant increase at the level of the left inferior parietal cortex and a decrease within the mesial aspect of the left superior frontal gyrus. Presumably, the former finding reflects increasing demands on the phonological short-term memory store, due to faster updating of its content under increased word production rate. Decreasing activation within the superior frontal gyrus might indicate contribution of this area to the initiation of the cognitive processes subserving the sequencing of verbal items. These findings demonstrate the capability of fMRI as a powerful tool for the analysis of dynamic brain activation.  相似文献   

9.
The classic neurologic model for reading, based on studies of patients with acquired alexia, hypothesizes functional linkages between the angular gyrus in the left hemisphere and visual association areas in the occipital and temporal lobes. The angular gyrus also is thought to have functional links with posterior language areas (e.g., Wernicke's area), because it is presumed to be involved in mapping visually presented inputs onto linguistic representations. Using positron emission tomography , we demonstrate in normal men that regional cerebral blood flow in the left angular gyrus shows strong within-task, across-subjects correlations (i.e., functional connectivity) with regional cerebral blood flow in extrastriate occipital and temporal lobe regions during single word reading. In contrast, the left angular gyrus is functionally disconnected from these regions in men with persistent developmental dyslexia, suggesting that the anatomical disconnection of the left angular gyrus from other brain regions that are part of the "normal" brain reading network in many cases of acquired alexia is mirrored by its functional disconnection in developmental dyslexia.  相似文献   

10.
The central nervous system (CNS) effects of mental stress in patients with coronary artery disease (CAD) are unexplored. The present study used positron emission tomography (PET) to measure brain correlates of mental stress induced by an arithmetic serial subtraction task in CAD and healthy subjects. Mental stress resulted in hyperactivation in CAD patients compared with healthy subjects in several brain areas including the left parietal cortex [angular gyrus/parallel sulcus (area 39)], left anterior cingulate (area 32), right visual association cortex (area 18), left fusiform gyrus, and cerebellum. These same regions were activated within the CAD patient group during mental stress versus control conditions. In the group of healthy subjects, activation was significant only in the left inferior frontal gyrus during mental stress compared with counting control. Decreases in blood flow also were produced by mental stress in CAD versus healthy subjects in right thalamus (lateral dorsal, lateral posterior), right superior frontal gyrus (areas 32, 24, and 10), and right middle temporal gyrus (area 21) (in the region of the auditory association cortex). Of particular interest, a subgroup of CAD patients that developed painless myocardial ischemia during mental stress had hyperactivation in the left hippocampus and inferior parietal lobule (area 40), left middle (area 10) and superior frontal gyrus (area 8), temporal pole, and visual association cortex (area 18), and a concomitant decrease in activation observed in the anterior cingulate bilaterally, right middle and superior frontal gyri, and right visual association cortex (area 18) compared with CAD patients without myocardial ischemia. These findings demonstrate an exaggerated cerebral cortical response and exaggerated asymmetry to mental stress in individuals with CAD.  相似文献   

11.
Neuroimaging studies in humans have consistently found robust activation of frontal, parietal, and temporal regions during working memory tasks. Whether these activations represent functional networks segregated by perceptual domain is still at issue. Two functional magnetic resonance imaging experiments were conducted, both of which used multiple-cycle, alternating task designs. Experiment 1 compared spatial and object working memory tasks to identify cortical regions differentially activated by these perceptual domains. Experiment 2 compared working memory and perceptual control tasks within each of the spatial and object domains to determine whether the regions identified in experiment 1 were driven primarily by the perceptual or mnemonic demands of the tasks, and to identify common brain regions activated by working memory in both perceptual domains. Domain-specific activation occurred in the inferior parietal cortex for spatial tasks, and in the inferior occipitotemporal cortex for object tasks, particularly in the left hemisphere. However, neither area was strongly influenced by task demands, being nearly equally activated by the working memory and perceptual control tasks. In contrast, activation of the dorsolateral prefrontal cortex and the intraparietal sulcus (IPS) was strongly task-related. Spatial working memory primarily activated the right middle frontal gyrus (MFG) and the IPS. Object working memory activated the MFG bilaterally, the left inferior frontal gyrus, and the IPS, particularly in the left hemisphere. Finally, activation of midline posterior regions, including the cingulate gyrus, occurred at the offset of the working memory tasks, particularly the shape task. These results support a prominent role of the prefrontal and parietal cortices in working memory, and indicate that spatial and object working memory tasks recruit differential hemispheric networks. The results also affirm the distinction between spatial and object perceptual processing in dorsal and ventral visual pathways.  相似文献   

12.
To evaluate the functional neuroanatomies underlying letter and category fluency, 18 normal controls were studied with oxygen-15 water regional cerebral blood flow positron emission tomography. Three counterbalanced conditions each consisted of 6 trials (45 s each): letter fluency (generating words when cued with a particular letter), semantic fluency (generating words when cued with a particular category), and a control condition (generating days of the week and months of the year). Relative to the control, participants activated similar brain regions during both fluency tasks, including the anterior cingulate, left prefrontal regions, thalamus, and cerebellum; reductions were found in parietal and temporal regions. In a direct comparison of the 2 fluency tasks, inferior frontal cortex and temporoparietal cortex (hypothesized to participate in a phonologic loop for accessing word pronunciation) were activated more during letter than semantic fluency, whereas left temporal cortex (associated with access to semantic storage) was activated more during semantic than letter fluency. This study identifies subtle differences in the neural networks underlying letter and semantic fluency that may underlie the dissociation of these abilities in patients. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
A 69-year-old left-handed man developed Broca aphasia and jargon agraphia following a right cerebral infarction. He learned to write with his right hand. There is no family history of left-handedness. Neurological examination revealed hemiparesis, sensory impairment, and hyperreflexia with pathological reflexes on the left side. An MRI demonstrated lesions in the area including the pre- and post-central gyri, the posterior part of the middle and inferior frontal gyri, and inferior parietal lobule on the right side. Neuropsychologically he was alert and cooperative. He demonstrated severe Broca aphasia and his verbal output was limited to a few residual words. On the other hand, he could communicate through writing Kanji words. Writing words was relatively preserved with Kanji but not with Kana characters. Asked to write a Japanese folk tale, he showed jargon agraphia mixed with some correct Kanji words. His comprehension of spoken and written sentences was well preserved. He showed mild ideomotor and buccofacial apraxia, left unilateral spatial neglect, and constructional impairment. Dissociation between spoken and written language is a prominent feature of this patient's language output. In this patient, right hemisphere seems to be dominant for language and praxis, and left hemisphere for motor engram of writing. Learning to write with the right hand may have enhanced the establishment and maintenance of motor engram for writing in the left hemisphere. The intact motor engram of characters in the left hemisphere could be retrieved by the right hand without control from the language area in the diseased right hemisphere, resulting in jargon agraphia especially with Kana characters. In left handed people, the hand with which they learn to write may effect interhemisphere lateralization of language functions.  相似文献   

14.
We investigated the topography of human cortical activation during an antisaccade task by focal transcranial magnetic stimulation (TMS). We used a figure-eight shaped coil, with the stimulus intensity set just above the threshold for activation of the hand motor areas but weak enough not to elicit blinks. TMS was delivered at various time intervals (80, 100, and 120 ms) after target presentation over various sites on the scalp while the subjects performed the antisaccade task. It was possible to elicit a mild but significant delay in saccade onset over 1) the frontal regions (a region 2-4 cm anterior and 2-4 cm lateral to hand motor area) and 2) posterior parietal regions (6-8 cm posterior and 0-4 cm lateral to hand motor area) regardless of which hemisphere was stimulated. The frontal regions were assumed to correspond to a cortical region including the frontal eye fields (FEFs), whereas the parietal regions were assumed to represent a wide region that includes the posterior parietal cortices (PPCs). The regions inducing the delay shifted from the posterior parietal regions at an earlier interval (80 ms) to the frontal regions at a later interval (100 ms), which suggested an information flow from posterior to anterior cortical regions during the presaccadic period. At 120 ms, the effect of TMS over the frontal regions still persisted but was greatly diminished. Erroneous prosaccades to the presented target were elicited over a wide cortical region including the frontal and posterior parietal regions, which again showed a forward shift with time. However, the distribution of effective regions exhibited a clear contralateral predominance in terms of saccade direction. Our technique provides a useful method not only for detecting the topography of cortical regions active during saccadic eye movement, but also for constructing a physiological map to visualize the temporal evolution of functional activities in the relevant cortical regions.  相似文献   

15.
Spinal cord stimulation applied at thoracic level 1 (T1) has a neurally mediated anti-anginal effect based on anti-ischaemic action in the myocardium. Positron emission tomography was used to study which higher brain centres are influenced by spinal cord stimulation. Nine patients with a spinal cord stimulator for angina pectoris were studied using H(2)(15)O as a flow tracer. Relative changes in regional cerebral blood flow related to stimulation compared with non-stimulation were assessed and analysed using the method of statistical parametric mapping. Increased regional cerebral blood flow was observed in the left ventrolateral periaqueductal grey, the medial prefrontal cortex [Brodmann area (BA) 9/10], the dorsomedial thalamus bilaterally, the left medial temporal gyrus (BA 21), the left pulvinar of the thalamus, bilaterally in the posterior caudate nucleus, and the posterior cingulate cortex (BA 30). Relative decreases in rCBF were noticed bilaterally in the insular cortex (BA 20/21 and BA 38), the right inferior temporal gyrus (BA 19/37), the right inferior frontal gyrus (BA 45), the left inferior parietal lobulus (BA 40), the medial temporal gyrus (BA 39) and the right anterior cingulate cortex (BA 24). It is concluded that spinal cord stimulation used as an additional treatment for angina applied at T1 modulates regional cerebral blood flow in brain areas known to be associated with nociception and in areas associated with cardiovascular control.  相似文献   

16.
This study was conducted to assess the relative predictive validity of phonological processing, listening comprehension, general cognitive ability, and visual-motor coordination against early reading skills within a sample of children from diverse linguistic backgrounds. 65 children were tested in kindergarten with measures from each of the aforementioned areas, and in Grade 1 with measures of letter and word recognition. Among all predictor variables, phonological processing was the only significant predictor of Grade 1 reading. Language(s) spoken in the home added to the prediction of letter recognition. Results suggest that phonological processing may contribute to the acquisition of basic reading skills for children with varied language experiences in the same way as it does for monolingual children. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
We carried out multi-dipole estimation and pursued spatio-temporal brain activity on a time scale of several milliseconds during an auditory discrimination task using a whole-cortex type SQUID system. Neuronal activities were estimated in the medial (hippocampus, parahippocampal gyrus, etc.) and lateral temporal cortices (superior and middle temporal gyri, etc.), the dorsolateral prefrontal cortex (middle and inferior frontal gyri, etc.) and the parietal cortex (supramarginal gyrus, etc.) in the 280-400 ms latency range. The activity in the posterior hippocampal region was the most prominent and long-lasting in parallel with the activities in the other regions. Therefore, the posterior hippocampal region is a central structure engaged in auditory discrimination. The whole-cortex neuromagnetic measurements provided the possibility of imaging the time-varying activities of the human cortico-hippocampal neural networks.  相似文献   

18.
The effect of frontal lobe lesions on the accuracy of prediction of recall in a word list learning task was studied. Fifty-nine patients with a focal brain lesion and 21 non-brain-damaged control patients memorized a word list by selective reminding and predicted before each recall trial the number of words they would be able to recall. The patients with left frontal lesions, who were inferior to the patients with right frontal lesions and the control patients in word list recall, overpredicted their recall more than the other brain-damaged patients or the control patients, especially on the 1st trial. The patients with right frontal lesions were less accurate in the prediction of recall than the patients with right posterior lesions or the control patients. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
This study utilised positron emission tomography (PET) to identify the cortical areas involved in verbal initiation and suppression in normal subjects whilst performing a sentence completion test (the Hayling Test). In the first condition (response initiation) subjects were required to complete a sentence from which the last word was omitted, whereas in the second condition (response suppression) subjects were asked to complete a sentence with a word which made no sense in the context of the sentence. Subjects were also required to perform a control task in which they had to read out the last word of given sentences. Compared to the control task, response initiation was associated with left-sided activation of the frontal operculum, inferior frontal gyrus, middle temporal gyrus and the right anterior cingulate gyrus, whereas response suppression was associated with left frontal operculum, inferior frontal gyrus and right anterior cingulate gyrus activation. The difference in activation between the two conditions of the Hayling Test lay in the increased activation of the left middle temporal gyrus and the left inferior frontal gyrus during response initiation.  相似文献   

20.
Even though there have been numerous positron emission tomography (PET) activation studies on the perfusional and metabolic bases of language processing, little is known about the intracerebral functional network of language and cognitive processes. It was the aim of this study to investigate the cerebral interregional correlations during voluntary word association versus word repetition in healthy subjects to gain insight into the functional connectivity of associative speech processing. Due to individual variability in functional anatomy, the study protocol was designed as an averaged single-subject study. Eight healthy volunteers performed a verbal association task during fluorine-18 fluorodeoxyglucose (18F-FDG) PET scanning. Two different tasks were performed in randomized order: (a) word repetition (after auditory presentation of nouns) as a control condition, and (b) word association (after auditory presentation of nouns) as a specific semantic activation. The regional metabolic rate of glucose (rMRGlu) was calculated after brain regionalization [112 regions of interest on individual 3D flash magnetic resonance imaging (MRI)] and PET/MRI realignment. Statistical analysis was performed for comparison of association and repetition and for calculation of interregional correlation coefficients during both tasks. Compared with word repetition, word association was associated with significant increases in rMRGlu in the left prefrontal cortex, the left frontal operculum (Broca's area) and the left insula, indicating involvement of these areas in associative language processing. Decreased rMRGlu was found in the left posterior cingulum during word association. During word repetition, highly significant negative correlations were found between the left prefrontal cortex, the contralateral cortex areas and the ipsilateral posterior cingulum. These negative correlations were almost completely eliminated during the association task, suggesting a functional decoupling of the strict intercorrelation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号