首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

2.
An infant formula fat analog with capric acid mostly esterified at the sn‐1,3 positions, and substantial amounts of palmitic, docosahexaenoic (DHA), and arachidonic (ARA) acids at the sn‐2 position, was prepared by physically blending enzymatically synthesized structured lipids (SL) with vegetable oils. The components of the blend included high sn‐2 palmitic acid SL enriched with capric acid (SLCA), canola oil (CAO), corn oil (CO), high sn‐2 DHA (DHAOm), and high sn‐2 ARA (ARAOm) enzymatically modified oils. Each component was proportionally blended to match the fatty acid profile of commercial fat blends used for infant formula. The infant formula fat analog (IFFA1) was characterized for total and positional fatty acids (FA), triacylglycerol (TAG) molecular species, thermal behavior, and tocopherol content. IFFA1 contained 17.37 mol% total palmitic acid of which nearly 35 % was located at the sn‐2 position. The total capric acid content was 13.93 mol%. The content of DHA and ARA were 0.49 mol% (48.18 % at sn‐2) and 0.57 mol% (35.80 % at sn‐2), respectively. The predominant TAG were OPO (24.09 %), POP (15.70 %), OOO (11.53 %), and CLC (7.79 %). The melting completion and crystallization onset temperatures were 18.65 and ?2.19 °C, respectively. The total tocopherol content was 566.45 μg/g. This product might be suitable for commercial production of infant formulas.  相似文献   

3.
A structured lipid (SL) with a high amount of sn‐2 palmitic acid was synthesized from anhydrous milkfat and was then enriched with docosahexaenoic (DHA) and arachidonic (ARA) acids using an immobilized lipase. Three different methods were compared including physical blending, enzymatic interesterification, and enzymatic acidolysis. Products were compared with respect to differences in fatty acid profiles, reaction times, antioxidant contents, oxidative stability, melting and crystallization profiles, and reaction yields. The acidolysis method was the least suitable for the synthesis of desired product because of a low reaction yield, low incorporation of DHA, low oxidative stability, and the extra processing steps required. The physical blending and interesterification methods were suitable, but the interesterification product (IE‐SL) had higher amounts of ARA at the sn‐2 position. The IE‐SL contained total ARA and DHA of 0.63 and 0.50 mol%, and 0.55 and 0.46 mol% at the sn‐2 position, respectively. The IE‐SL also contained 44.97 mol% sn‐2 palmitic acid. The reaction yield for the IE‐SL was 91.84 %, and its melting completion and crystallization onset temperatures were 43.1 and 27.1 °C, respectively. This SL might be totally or partially used in commercial fat blends for infant formula.  相似文献   

4.
Cake shortening is an important ingredient that imparts taste and texture in the cake as the final product. Hydrogenated shortenings contain high amounts of trans fatty acids, which is considered a risk factor for obesity, cancers, and cardiovascular diseases. In this research, chemically interesterified blends of canola oil (CO) and palm stearin (PS) were recruited in order to formulate zero‐trans shortening, specifically for cake application. The optimization of shortening formulation was performed by Design‐Expert software, considering melting, congelation, textural, and rheological properties of cake shortening as responses. The formulated shortening in the weight ratio of 66.41:33.58 (PS:CO) (%, w/w) was analyzed and compared with two commercial cake shortenings in terms of fatty acid and triacylglycerol composition, slip melting point (SMP), solid fat content (SFC), and rheological and textural properties. The results showed that the formulated zero‐trans cake shortening with 0.2% trans, 47.2% saturated fatty acids, SMP of 40.9 °C, SFC of 10.51% at 37 °C, firmness of 1522.5 g, and linear viscoelastic range of 0.035% had the most acceptable criteria among cake‐shortening samples. The findings of this study offer insights into the relationship between shortening functionality and physicochemical properties and serve as a base for future studies on zero‐trans shortenings formulation.  相似文献   

5.
The fat contents of 12 brands of biscuits were extracted and evaluated for free fatty acids (FFA) and their fatty acid composition (FAC). The oil content and FFA varied from 13.7 to 27.6% and 0.2 to 1.0%, respectively. The FAC was analyzed by gas chromatography–mass spectroscopy with particular emphasis on trans fatty acids (TFA). Total saturated, unsaturated, cis-monounsaturated and polyunsaturated fatty acids were determined in the range of 37.9–46.9, 53.0–62.0, 12.3–43.7 and 0.1–9.2%, respectively. The high amount of TFA was observed in all biscuit samples and varied from 9.3 to 34.9%. The quantity and quality of the lipid fraction of the biscuits indicated that the all analyzed biscuits are a rich source of fat, saturated fatty acids and trans fatty acids, consequently not suitable for the health of consumers. The high content of trans fatty acids and palmitic acid also indicated that blends of RBD palm oil and partially hydrogenated oil had been used in the biscuit manufacturing.  相似文献   

6.
Though peanuts are classified as a high‐fat food, they possess good proportions of fatty acids deemed as heart healthy. The fatty acid compositions of Runner peanuts were determined for commercially grown cultivars over two recent crop years. GC‐FID analyses revealed that the fatty acid levels for Runner peanuts were significantly (p <0.05) different among the normal, mid‐, and high‐oleic peanuts investigated. Oleic acid‐to‐linoleic acid (O/L) ratios were found to be 1.93 ± 0.30, 5.25 ± 1.12, and 16.9 ± 5.20 for normal, mid‐, and high‐oleic peanut lipids, respectively. Tamrun OL01 possessed a fatty acid profile characteristic of a mid‐oleic cultivar. From the sample set (n = 151), mean % weights for oleic acid and linoleic acid were 52.09 ± 2.84 and 27.38 ± 2.60 in normal, 69.33 ± 3.18 and 13.66 ± 2.35 in mid‐oleic, and 78.45 ± 2.05 and 5.11 ± 1.67 in high‐oleic peanuts, respectively. Cluster analysis segregated cultivars based on fatty acids into normal, mid‐, and high‐oleic groups. Factorial analysis revealed that cultivar effects were significant (p <0.01) for all fatty acids, except for lignoceric acid. Cultivar effects were also highly significant (p <0.001) for O/L, IV, unsaturated/saturated fatty acid (U/S) ratio, and % saturation. Significant crop year effects were shown for palmitic, oleic, arachidic, gondoic, and lignoceric acids, as well as U/S ratio and % saturation. Healthy unsaturated fats accounted for ?80% in all crop years and cultivars.  相似文献   

7.
Bakery shortenings prepared by hydrogenation contain high levels of trans fatty acids, which are considered to be risk factors for cardiovascular disease. The shortenings prepared from maogo kernel and mahua fats have no trans fatty acids. Mahua fat was fractionated by dry fractionation to obtain a high-melting fraction (10% yield, Mh1). Mango fat was fractionated by two-stage solvent fractionation, separating about 15% high-melting fraction (Mk1) in the first stage, followed by 40% stearin (Mk2) in the second stage. The formulation containing 80% Mh1 and 20% of mango middle stearin fraction (Mk2) showed melting characteristics and onset and enthalpy of crystallization similar to those of commercial hydrogenated shortenings designed for cakes and biscuits. The formulation suitable for puff pastry shortening was prepared by blending 50% mango 1st stearin (Mk1) and 50% mahua fat with addition of 5–7% of fully hydrogenated vegetable oil. The formulations having melting characteristics similar to those of commercial cake and biscuit shortenings were also prepared by blending 40% mango fat and 60% mahua fat with 5–7% incorporation of fully hydrogenated peanut oil. However, these formulations showed delayed transition to the stable forms compared to those of commercial samples. Fatty acid composition revealed that commercial hydrogenated shortenings consisted of 18–29% trans oleic acid, whereas the formulations we prepared did not contain any trans acids. The iodine values of commercial samples were 57–58, whereas the value for the formulations prepared were 47–53. The consistency of the prepared samples as measured by cone penetrometer was slightly harder than commercial samples. These studies showed that it is possible to prepare bakery shortenings with no trans fatty acids by using mango and mahua fats and their fractions.  相似文献   

8.
An easy and efficient method for the separation of saturated and unsaturated fatty acid mono alkyl esters, prepared from animal fat, was developed. The most efficient separation was achieved by the use of solvents such as methanol and acetone at low temperatures. The dilution of the alkyl esters with 10 times the amount of solvent (10:1 v/w) and storage of the mixture for 4 h at ?22 °C could be defined as optimum conditions. After filtration of the saturated fraction at the corresponding temperature very pure fractions were obtained. For fatty acid methyl esters deriving from tallow, with an initial content of saturated fatty acids of almost 50 %, a saturated ester fraction with only 5 % unsaturated fatty acids and an unsaturated ester fraction with about 9 % of saturated fatty acids could be obtained. The solvent easily could be recovered by distillation. In addition fatty acid ethyl, 1‐propyl, 2‐propyl, 1‐butyl, tert‐butyl and 3‐methyl‐1‐butyl esters were prepared and separated into saturated and unsaturated fractions. All fractions were analyzed according to the fatty acid compositions and showed similar or slightly worse results compared to the methyl esters. The cold filter plugging points of the unsaturated fractions were measured, showing the lowest value for the unsaturated methyl ester fraction at ?26 °C. The fractionation with the use of solvents is an easy tool in order to obtain fatty acid alkyl esters with excellent cold temperature behavior out of animal fat.  相似文献   

9.
The fatty acid composition of the diet has various effects on atherosclerosis risk factors. Dietary saturated fatty acids (SFA) and trans‐unsaturated fatty acids increase the low‐density lipoprotein (LDL)‐/high‐density lipoprotein (HDL)‐cholesterol ratio in serum, while these fats do not have a significant bearing on serum triglyceride levels. By contrast, dietary monounsaturated fatty acids (MUFA), n‐6 polyunsaturated fatty acids (PUFA), and α‐linolenic acid (C18:3n‐3) similarly reduce LDL cholesterol concentrations, while their influence on serum HDL cholesterol and triglycerides is not appreciable. Dietary long‐chain n‐3 PUFA slightly increase serum LDL cholesterol concentrations, but are nevertheless considered salubrious with regard to serum lipids due to the distinct triglyceride‐lowering effects. MUFA‐rich compared to n‐6 PUFA‐rich diets strongly reduce the in vitro oxidizability of LDL. The available studies on this subject also suggest that n‐3 PUFA in the small amounts usually present in the diet are not unduly harmful. These findings are consistent with reports from observational studies: the amount of SFA is positively and the amount of MUFA and n‐6 PUFA in the diet is inversely associated with the risk of cardiovascular disease in most epidemiological studies. The available studies have had an impact on current dietary guidelines, which unanimously recommend that most of the dietary fat should be in the form of MUFA, while the amount of SFA and trans fatty acids in the diet should be as low as possible.  相似文献   

10.
The aim of this study was to determine the effects of using various probiotic bacteria and plant oils in cultured cream on the fatty acid profiles including conjugated linoleic acids (CLA). L. acidophilus, B. bifidum, S. thermophilus and L. bulgaricus, P. thoenii (jensenii) P126, and P. jensenii B1264 and a mixed culture (blend of L. acidophilus, B. bifidum, S. thermophilus and L. bulgaricus) were used in the fermentation of cream samples at a level of 2%. Cream samples were fortified with sunflower oil, soybean oil and hazelnut oil at a level of 2%. Microbial counts and fatty acid profile analysis were performed. The microbial results demonstrated that fermented cream could be a superior product for the presence of probiotics. Even though the cream samples contained 52% milk fat, in the majority of the samples growth of probiotic bacteria was higher than 106 cfu/g. Concentrations of short‐chain fatty acids such as butyric, caproic and capric acids in cultured cream samples differed depending on the cultures used, while long‐chain unsaturated fatty acids were significantly affected by the plant oil fortification. The highest CLA content was obtained in the sample produced with B. bifidum, containing 0.73 mg of CLA/g fat. The effect of different plant oils on CLA concentration was significant (p >0.05) for HO + YC, SFO + LBYC and SO + LBYC. Results of the study are important for the dairy industry since it is the first publication on fermented cream with improved functional properties. The development of functional cultured cream with plant oils and probiotic bacteria would provide an important alternative dairy product.  相似文献   

11.
The aim of this study was to produce high‐quality meat from lambs under different feeding conditions, as measured by the accumulation of n‐3 fatty acids and conjugated linoleic acids (CLA) in muscle and subcutaneous fat. In total, 13 male crossbred lambs (Black Head×Gotland), each at 24 kg live weight, were divided into two feeding groups. Lambs were kept either on pasture (pasture grazing, n = 6) or in the stable (concentrate feeding, n = 7). The linolenic acid (C18:3n‐3) contained in the grass was absorbed and deposited into the different lipid classes of muscle and subcutaneous fat. The proportion of total n‐3 fatty acids in the different lipids of grazing lambs was significantly (p = 0.05) higher compared to that in concentrate‐fed lambs. The n‐6/n‐3 ratio (mean ± SEM) in muscle of grazing lambs was 1.2 ± 0.09 in contrast to 2.3 ± 0.09 (p = 0.05) of the animals kept in the stable. In subcutaneous fat, this ratio was 0.9 ± 0.2 in lambs kept on pasture versus 3.5 ± 0.2 (p = 0.05) after indoor keeping. The relative concentration of C18:1trans‐11 in total muscle lipids, phospholipids, triacylglycerols and subcutaneous fat was significantly increased by grass feeding compared to concentrate feeding. Significant influences of feeding were shown for saturated fatty acids. In concentrate‐fed lambs, a lower content of saturated fatty acids was detected. The proportion of CLAcis‐9,trans‐11 (1.9 ± 0.2% vs. 1.1 ± 0.1% in muscle, 2.5 ± 0.2% vs. 1.4 ± 0.2% in subcutaneous fat, 0.7 ± 0.04% vs. 0.4 ± 0.04% in phospholipids) in lambs was significantly (p = 0.05) higher after grazing than after concentrate feeding, respectively.  相似文献   

12.
This study emphasizes microbial mediated transformation of sunflower oil to an adhesive product and characterization in detail. Marine bacterial isolates Bacillus (MTCC 5514), when grown in mineral medium, releases both hydrolytic enzymes and surface‐active components during the log phase of growth. When this species was grown in the presence of sunflower oil at an optimized concentration of 5% (w/v) under room temperature, enzymatic hydrolysis of oil proceeds with the release of fatty acids and glycerol. Further, on increasing the incubation period, the presence of surface‐active components, lipase and glycerol, influence the dimerization of the fatty acids, which further, transformed to a polymerized product sunflower oil‐based adhesive product with adhesive nature. Liquid chromatography‐mass spectrometry (electrospray ionization) analysis further authenticates the presence of dimeracids. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40555.  相似文献   

13.
A study was carried out to determine the profiles of fatty acids in fermented milks and dairy derivatives made with milk fat substituted by polyunsaturated fatty acid (PUFA)‐enriched fat. In order to improve the organoleptic properties of those products, whey protein concentrates (WPC) were added during the manufacturing process. Interest was focused during manufacturing and storage period on the contents of “healthy” fatty acids, mainly conjugated linoleic acid and n‐3 PUFA. Contents of these fatty acids were not affected by the manufacture practices and neither did addition of WPC during manufacturing nor cold storage cause their decrease. Percentages of total n‐3 fatty acids in fat from dairy derivatives enriched in PUFA after 21 d of storage (1.45%) were very close to those obtained before processing (1.39%). Contents did not differ either substantially when WPC were added during manufacturing (1.46%). The increase of volatile compounds was also examined. Although a slight decrease in the total volatile content was observed, percentages of different compounds were not modified when milk fat was substituted by PUFA enriched fat.  相似文献   

14.
Obesity and cardiovascular diseases are among the most worrying health problems worldwide. Dietary habits can be catalysts for the rise of these health issues in western countries. In this work, a meat product (pork patties) commonly elaborated with a high fraction of saturated fat is reformulated with an oleogel based on linseed oil (rich in polyunsaturated fatty acids). The oleogel is used for the partial replacement of the solid fat fraction present in pork patties (H‐25 for 25% and H‐75 for 75% of replacement). Incorporation of oleogels results in the modification of the fatty acid profile and in the significant decrease of the omega‐6/omega‐3 ratio. Results show that for both degrees of fat substitution, there are no differences between the patties produced with oleogel incorporation and the control, regarding textural parameters such as hardness, cohesiveness, and chewiness. Overall, samples with less amount of oleogel (H‐25) are well classified in the acceptance and preference tests, despite the clear preference among the sensorial panel toward the control samples. These results show the feasibility of introducing oleogels as a fat replacer in the manufacturing process of pork patties, though there is still work to be done regarding some of their sensorial attributes. Practical Applications: The purpose of this work is focused on the study of the properties of meat patties after the replacement of saturated fat with a multicomponent oleogel, foreseeing the hamburger production. The results show that the oleogel incorporation in meat patties is possible at the industrial level without additional unitary steps during meat patty production. Based on this work it is possible to produce meat patties with adjusted fatty acids profiles.  相似文献   

15.
BACKGROUND: Enzymatic esterification of phytosterols with fatty acids from butterfat in equimolecular conditions to produce phytosteryl esters was performed in solvent‐free medium. Commercial and immobilized Candida rugosa lipases were used as biocatalysts for the reaction. RESULTS: By this methodology, under simple and mild reaction conditions (without solvents, 50 °C and short reaction times), 94% and 99% (w/w) of phystosteroyl esters were obtained in 48 h and 9 h with the commercial and the immobilized lipase, respectively. The effects of temperature, fatty acid specificity, enzyme amount and residual activity of each lipase were also evaluated. CONCLUSIONS: The phytosteryl esters from butterfat produced in this study are expected to have lower melting point, improved oil and fat solubility and bioavailability compared to that of their corresponding free phytosterols. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
In milk fat, fatty acids are located at specific positions on the triacylglycerol backbone. The sn‐2 position contains most saturated long‐chain fatty acids, while the sn‐3 position contains short‐chain fatty acids. Moreover, these triacylglycerols are structured as milk fat globules surrounded by their native membrane containing phospholipids. This native structure can be modified by the dairy processes to generate various possible colloidal structures with milk fat. The structure of triacylglycerols and the milk fat ultrastructure can impact on fatty acid digestion and absorption, which has a potential effect on cardiovascular risk factors linked to postprandial hypertriglyceridemia. The review points out the impact of the triacylglycerol structure and the ultrastructure of milk fat on these risk factors.  相似文献   

17.
Eicosapentaenoic acid (EPA, 20:5n‐3), docosapentaenoic acid (DPA) isomers (22:5n‐6 and 22:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3) derived from tuna oil were concentrated by three stages of urea fractionation at various crystallization temperatures and different fatty acid/urea ratios. Thereafter, polyunsaturated fatty acids concentrate containing comparatively enriched DPA levels was purified by argentated silica gel column chromatography. A product containing 22.2 ± 0.6 % EPA, 4.6 ± 0.0 % DPAn‐6, 5.9 ± 0.1 % DPAn‐3 and 42.3 ± 1.2 % DHA was obtained at 1:1.6 fatty acid/urea ratio (w/w) by crystallization at ?8 °C for 16 h, ?20 °C for 8 h, and ?8 °C for 16 h. A DPA isomer concentrate containing 26.1 ± 0.5 % DPAn‐6 and 22.3 ± 0.4 % DPAn‐3 was achieved by argentated silica gel chromatography in the 6 % acetone/n‐hexane solvent fraction (v/v), and the recovery of both fatty acids was 66.1 ± 3.2 and 70.7 ± 2.2 %, respectively. Furthermore, 91.9 ± 2.5 % EPA and 99.5 ± 2.1 % DHA with recoveries of 47.8 ± 2.0 and 56.7 ± 3.3 %, respectively, were obtained in various fractions.  相似文献   

18.
The effect of alpha‐tocopherol (alpha‐T) and quercetin on the formation of hydroperoxides of linoleic and linolenic acids during autoxidation at 60 ± 1 °C was investigated. Three isomers of hydroperoxides were detected using HPLC. Of isomers of linoleic acid hydroperoxides, 13‐hydroperoxy‐octadecadienoic acid trans‐trans (13‐HPODE t‐t), 9‐HPODE cis‐trans (9‐HPODE c‐t) and 9‐HPODE trans‐trans (9‐HPODE t‐t) were identified, constituting 64, 19 and 17% of the total amount, respectively. For linolenic acid, the components 13‐hydroperoxy‐octadecatrienoic acid trans‐trans (13‐HPOTE t‐t), 9‐HPOTE c‐t and 9‐HPOTE t‐t contributed 7, 33 and 60% to the total, respectively. The different dominant hydroperoxide isomers detected in linoleic and linolenic acids during oxidation are related to their chemical structure and the microenvironment of emulsion droplets. The ratios between specific isomers for both fatty acid hydroperoxides did not change during oxidation with or without antioxidants. Alpha‐T effectively inhibited the oxidation of fatty acids and reduced the formation of hydroperoxides. The total amount of the hydroperoxides decreased along with the increase in the concentration of alpha‐T, 1–40 µM. Quercetin inhibited the oxidation of both fatty acids at similar efficiency only at 40 µM concentration. A synergistic antioxidant effect of quercetin with alpha‐T in a binary system on both fatty acids was observed.  相似文献   

19.
High‐fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids and induce lipotoxicity in various organs. Invitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in vivo; however, these approaches are not physiological as tissues are exposed to multiple fatty acids in vivo. Here we characterize circulating lipids in obesity‐prone rats fed an HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in vitro studies. Rats were fed an HFD (60 % kcal fat) or a control diet (10 % kcal fat) for 3 weeks; liver tissue and both portal and systemic blood were collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG) and phospholipids in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40 % lower in HFD‐fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n‐6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in vitro studies attempting to model lipid exposures that occur during in vivo HFD conditions.  相似文献   

20.
The aim of this work was to evaluate the characteristics of fillings used in cookies commercialized in Brazil and in USA according to their chemical composition, labels, nutritional information, ingredients list, and price. Fillings had approximately 25–32% of fat. In general, the composition of these fats consisted of approximately 50% of saturated fatty acids (SFA), mainly palmitic acid, and 50% of unsaturated fatty acids, mainly oleic acid. Brazilian samples had trans-fatty acids (TFA) in the range of 1–15% although in many cases their presence was not reported in the labels. USA product labels did not present a fixed portion weight but they showed detailed information about the types of fats used such as source and the process used for their production. In 70% of Brazilian product labels, the information shown in the ingredient list was limited to “vegetable fat,” which does not give enough information to consumers about the type of fat used. In addition, our results showed that low-trans-products or zero-trans-products, in which TFA were replaced by SFA, presented the highest prices. This research suggests that further legislation should be developed in Brazil to decrease the amount of TFA in foods and improve their nutritional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号