首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An experimental investigation has been carried out for a range of system and operating parameters in order to analyse effect of artificial roughness on heat transfer and friction in solar air heater duct having protrusions as roughness geometry. An increase in heat transfer and friction loss has been observed for duct having roughened absorber plate. Experimental data have been used to develop Nusselt number and friction factor correlations as function of system and operating parameters for predicting performance of the system having investigated type of roughness geometry.  相似文献   

2.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

3.
Artificial roughness in form of ribs is convenient method for enhancement of heat transfer coefficient in solar air heater. This paper presents experimental investigation of heat transfer and friction factor characteristics of rectangular duct roughened with W-shaped ribs on its underside on one broad wall arranged at an inclination with respect to flow direction. Range of parameters for this study has been decided on basis of practical considerations of system and operating conditions. Duct has width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) 0.018-0.03375 and angle of attack of flow (α) 30-75°. Air flow rate corresponds to Reynolds number between 2300-14,000. Heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition to determine thermo-hydraulic performance. Correlations have been developed for heat transfer coefficient and friction factor for roughened duct.  相似文献   

4.
In this work, results of an experimental investigation of the effect of geometrical parameters of V-shaped ribs on heat transfer and fluid flow characteristics of rectangular duct of solar air heater with absorber plate having V-shaped ribs on its underside have been reported. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions. The investigation has covered a Reynolds number (Re) range of 2500-18000, relative roughness height (e/Dh) of 0.02-0.034 and angle of attack of flow (α) of 30-90° for a fixed relative pitch of 10. Results have also been compared with those of smooth duct under similar flow conditions to determine the enhancement in heat transfer coefficient and friction factor. The correlations have been developed for heat transfer coefficient and friction factor for the roughened duct.  相似文献   

5.
An experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of artificial roughness on heat transfer and friction characteristics in solar air heater duct which is having dimple shaped elements arranged in angular fashion (arc) as roughness elements on absorber plate. Duct has an aspect ratio (W/H) of 11, relative roughness pitch (p/e) range of 10–20, relative roughness height (e/Dh) range of 0.021–0.036, arc angle (α) range of 45–75° and Reynolds number (Re) ranges from 3600 to 18,000. A considerable increase in heat transfer and friction loss has been observed. The experimental data have been used to develop Nusselt number and friction factor correlations as a function of roughness parameters and operating parameters.  相似文献   

6.
Experimental investigation on the heat transfer and friction characteristics of rib-grooved artificial roughness on one broad heated wall of a large aspect ratio duct shows that Nusselt number can be further enhanced beyond that of ribbed duct while keeping the friction factor enhancement low. The experimental investigation encompassed the Reynolds number range from 3000 to 21,000; relative roughness height 0.0181–0.0363; relative roughness pitch 4.5–10.0, and groove position to pitch ratio 0.3–0.7. The effect of important parameters on the heat transfer coefficient and friction factor has been discussed and the results are compared with the results of ribbed and smooth duct under similar flow conditions. The present investigation clearly demonstrates that the heat transfer coefficient for rib-grooved arrangement is higher than that for the transverse ribs, whereas the friction factor is slightly higher for rib-grooved arrangement as compared to that of rectangular transverse ribs of similar rib height and rib spacing. The conditions for best performance have been determined. Correlations for Nusselt number and friction factor have been developed that predict the values within reasonable limits.  相似文献   

7.
An experimental investigation has been carried out to study the effect of heat transfer and friction characteristics of air passing through a rectangular duct which is roughened by V-down perforated baffles. The experiment encompassed Reynolds number (Re) from 3800 to 19,000, relative roughness height (e/H) values of 0.285–0.6, relative roughness pitch (P/e) range of 1–4 and open area ratio values from 12% to 44%. The effect of roughness parameters on Nusselt number (Nu) and friction factor (f) has been determined and increase in heat transfer and friction loss has been observed for ducts having a roughened test plate. Maximum Nusselt number is observed for the relative roughness pitch ranging from 1.5 to 3 for flow and geometrical parameters under consideration. The experimental data have been used to develop Nusselt number and friction factor correlations as a function of roughness and flow parameters.  相似文献   

8.
The aim of this study is to provide a remedy for the low thermophysical properties of air, which is used as a fluid of transfer in solar collectors. A fully developed flow needs to be created by the use of staggered fin rows soldered under the absorber plate. The fluid flow undergoes contractions followed by expansions, which creates a fully developed turbulent flow, and increases the thermal heat transfer between the absorber plate and the air. The fins increase the heat transfer surface, from which an appreciable improvement of the thermal heat performance of solar air heaters has been found in comparison to those of solar air heaters with a plane absorber. In this work we have tested the influence of the dimension of the fins and the influence of the space between consecutive fin rows mounted in staggered rows.  相似文献   

9.
This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number Re from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number Nu have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.  相似文献   

10.
An experimental study has been carried out to determine the effect on the heat transfer and friction characteristics of an equilateral triangular solar air heater duct using inclined continuous ribs as roughness element on the absorber plate. The experimental study encompasses the range of Reynolds numbers from 5600 to 28,000, relative roughness height (e/Dh) 0.021–0.043, relative roughness pitch (p/e) 8–16 and angle of attack (α ) 30–60°. The duct has an aspect ratio (W/H) of 1.15. The effect of flow parameters and roughness parameters on heat transfer and friction factor is discussed. The thermohydraulic performance parameter has been determined for the given range of flow parameters and roughness parameters.  相似文献   

11.
S.K. Saini  R.P. Saini 《Solar Energy》2008,82(12):1118-1130
An experimental study has been carried out for enhancement of heat transfer coefficient of a solar air heater having roughened air duct provided with artificial roughness in the form of arc-shape parallel wire as roughness element. Increment in friction factor by provided with such artificial roughness elements has also been studied. The effect of system parameters such as relative roughness height (e/d) and arc angle (α/90) have been studied on Nusselt number (Nu) and friction factor (f) with Reynolds number (Re) varied from 2000 to 17000. Considerable enhancement in heat transfer coefficient has been achieved with such roughness element. Using experimental data correlations for Nusselt number and friction factor have also been developed for such solar air heaters, which gives a good agreement between predicted values and experimental values of Nusselt number and friction factor.  相似文献   

12.
Paisarn Naphon   《Renewable Energy》2005,30(9):1345-1357
The performance and entropy generation of the double-pass flat plate solar air heater with longitudinal fins are studied numerically. The mathematical models described the heat transfer characteristics of the double-pass flat plate solar air heater derived from the conservation equations of energy. The predictions are done at air mass flow rate ranging between 0.02 and 0.1 kg/s. The effects of the inlet condition of working fluid and dimension of the solar air heater on the heat transfer characteristics, performance, and entropy generation are considered.  相似文献   

13.
An experimental investigation has been carried out to study the heat transfer coefficient by using 90° broken transverse ribs on absorber plate of a solar air heater; the roughened wall being heated while the remaining three walls are insulated. The roughened wall has roughness with pitch (P), ranging from 10–30 mm, height of the rib of 1.5 mm and duct aspect ratio of 8. The air flow rate corresponds to Reynolds number between 3000–12,000. The heat transfer results have been compared with those for smooth ducts under similar flow and thermal boundary condition to determine the thermal efficiency of solar air heater.  相似文献   

14.
V.S. Hans  R.P. Saini 《Solar Energy》2010,84(6):898-911
The use of artificial roughness on the underside of the absorber plate is an effective and economic way to improve the thermal performance of a solar air heater. Several experimental investigations, involving different types of roughness elements, have been carried out to improve the heat transfer from the absorber plate to air flowing in solar air heaters. This paper presents an experimental investigation carried out to study the effect of multiple v-rib roughness on heat transfer coefficient and friction factor in an artificially roughened solar air heater duct. The experiment encompassed Reynolds number (Re) from 2000 to 20000, relative roughness height (e/D) values of 0.019-0.043, relative roughness pitch (P/e) range of 6-12, angle of attack (α) range of 30-75° and relative roughness width (W/w) range of 1-10. Extensive experimentation has been conducted to collect data on heat transfer and fluid flow characteristics of a rectangular duct roughened with multiple v-ribs. Using these experimental data, correlations for Nusselt number and friction factor in terms of roughness geometry and flow parameters have been developed.  相似文献   

15.
文章提出了一种新型抛物线型吸热板结构的太阳能空气集热器,建立其数学模型和物理模型,运用ANSYS数值模拟软件,对不同入口流速和倾角下集热器内空气换热特性进行数值模拟。结果表明:随着流速的增加,3种吸热板集热器瞬时效率逐渐增加;随着倾角的增加,集热器瞬时效率先增加后减小,在倾角30°时最大;对比传统平板和三角波纹吸热板结构,抛物线型空气集热器具有较高的瞬时效率和较小的压损。  相似文献   

16.
This paper presents the results of an experimental investigation of heat transfer and friction in the flow of air in rectangular ducts having multi v-shaped rib with gap roughness on one broad wall. The investigation encompassed Reynolds number (Re) from 2000 to 20,000, relative gap distance (Gd/Lv) values of 0.24–0.80, relative gap width (g/e) values of 0.5–1.5, relative roughness height (e/D) values of 0.022–0.043, relative roughness pitch (P/e) values of 6–12, relative roughness width ratio (W/w) values of 1–10, angle of attack (α) range of 30°–75°. The optimum values of geometrical parameters of roughness have been obtained and discussed. For Nusselt number (Nu), the maximum enhancement of the order of 6.74 times of the corresponding value of the smooth duct has been obtained, however the friction factor (f) has also been seen to increase by 6.37 times of that of the smooth duct. The rib parameters corresponding to maximum increase in Nu and f were Gd/Lv = 0.69, g/e = 1.0, e/D = 0.043, P/e = 8, W/w = 6 and α = 60°. Based on the experimental data, correlations for Nu and f have been developed as function of roughness parameters of multi v-shaped with gap rib and flow Reynolds number.  相似文献   

17.
Fins serve as heat transfer augmentation features in solar air heaters however they increase pressure drop in flow channels. Pin fins are relatively good heat transfer augmentation features with superior aerodynamic performance and as a result find application in some solar air heaters. The exergy optimization method is employed in sizing the pin fin. Results indicate that high efficiency of the optimized fin improves the heat absorption and dissipation potential of a solar air heater. With optimum fin efficiency and superior absorptive coating quality, useful energy losses can be minimized. Some important observations pertinent in design are made.  相似文献   

18.
Giovanni Tanda 《Energy》2011,36(11):6651-6660
Repeated ribs are considered an effective technique to enhance forced convection heat transfer in channels. In order to establish the performance of rib-roughened channels, both heat transfer and friction characteristics have to be accounted for. In the present paper, heat transfer coefficients and friction factors have been experimentally investigated for a rectangular channel having one wall roughened by repeated ribs and heated at uniform flux, while the remaining three walls were smooth and insulated. Angled continuous ribs, transverse continuous and broken ribs, and discrete V-shaped ribs were considered as rib configurations. Different performance evaluation criteria, based on energy balance or entropy generation analysis, were proposed to assess the relative merit of each rib configuration. All the rib-roughened channels performed better than the reference smooth channel in the medium-low range of the investigated Reynolds number values, which is that typically encountered in solar air heater applications.  相似文献   

19.
Brij Bhushan  Ranjit Singh 《Solar Energy》2012,86(11):3388-3396
Thermal performance of solar air heater does not take into account energy loss due to friction for propelling air through the duct. Therefore, it is necessary to evaluate thermohydraulic performance in order to investigate simultaneous effect of thermal and hydraulic characteristics on performance of solar air heater. In the present paper thermal and thermohydraulic performance of smooth as well as roughened solar air heater has been investigated with the help of a mathematical model. Absorber plate of solar air heater has been roughened with the formation of protrusions. Optimum value of each roughness geometry parameter has been obtained on the basis of thermal and effective efficiency of roughened solar air heater. Design plots have also been prepared in order to facilitate the designer for designing such type of roughened solar air heater within the investigated range of system and operating parameters.  相似文献   

20.
Thermal performance of a single and double pass solar air heater with fins attached and using a steel wire mesh as absorber plate was investigated experimentally. The effects of air mass flow rate range between 0.012 kg/s and 0.038 kg/s on the outlet temperature and thermal efficiency was studied. The bed heights were 7 cm and 3 cm for the lower and upper channels respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号