共查询到20条相似文献,搜索用时 15 毫秒
1.
Simon Shaw 《Computer Methods in Applied Mechanics and Engineering》2004,193(52):5551-5572
We give a space-time Galerkin finite element discretisation of the quasistatic compressible linear viscoelasticity problem as described by an elliptic partial differential equation with a fading memory Volterra integral. The numerical scheme consists of a continuous Galerkin approximation in space based on piecewise polynomials of degree p>0 (cG(p)), with a discontinuous Galerkin piecewise constant (dG(0)) or linear (dG(1)) approximation in time. A posteriori Galerkin-error estimates are derived by exploiting the Galerkin framework and optimal stability estimates for a related dual backward problem. The a posteriori error estimates are quite flexible: strong Lp-energy norms of the errors are estimated using time derivatives of the residual terms when the data are smooth, while weak-energy norms are used when the data are non-smooth (in time).We also give upper bounds on the dG(0)cG(1) a posteriori error estimates which indicate optimality. However, a complete analysis is not given. 相似文献
2.
R. Verfürth 《Calcolo》2003,40(3):195-212
We consider discretizations of the heat equation by A-stable -schemes in time and conforming finite elements in space. For these discretizations we derive residual a posteriori error indicators. The indicators yield upper bounds on the error which are global in space and time and yield lower bounds that are global in space and local in time. The ratio between upper and lower bounds is uniformly bounded in time and does not depend on any step-size in space or time. Moreover, there is no restriction on the relation between the step-sizes in space and time. 相似文献
3.
Recently, the adaptive finite element methods have gained a very important position among numerical procedures for solving ordinary as well as partial differential equations arising from various technical applications. While the classical a posteriori error estimates are oriented to the use in h-methods the contemporary higher order hp-methods usually require new approaches in a posteriori error estimation. 相似文献
4.
Christian Kreuzer 《Calcolo》2013,50(2):79-110
We generalize the a posteriori techniques for the linear heat equation in Verfürth (Calcolo 40(3):195–212, 2003) to the case of the nonlinear parabolic $p$ -Laplace problem thereby proving reliable and efficient a posteriori error estimates for a fully discrete implicite Euler Galerkin finite element scheme. The error is analyzed using the so-called quasi-norm and a related dual error expression. This leads to equivalence of the error and the residual, which is the key property for proving the error bounds. 相似文献
5.
6.
In this paper, we study the a posteriori error estimates of two-grid finite volume element method for second-order nonlinear elliptic equations. We derive the residual-based a posteriori error estimator and prove the computable upper and lower bounds on the error in -norm. The a posteriori error estimator can be used to assess the accuracy of the two-grid finite volume element solutions in practical applications. Numerical examples are provided to illustrate the performance of the proposed estimator. 相似文献
7.
Raphaël Kuate 《Engineering with Computers》2013,29(4):497-505
In this paper, metrics derived from a posteriori error estimates for the Poisson problem and for the Stokes system solved by some finite element methods are presented. Numerical examples of mesh adaptation in two dimensions of the space are given and show that these metrics detect the singular behavior of the solution, in particular its anisotropy. 相似文献
8.
Usually, error estimators for adaptive refinement require exact discrete solutions. In this paper, we show how inaccurate
solutions (e.g., iterative approximations) can be used, too. As a side remark we characterise iterative solution schemes that
are particularly suited to producing good approximations for error estimators.
This work was supported by Deutsche Forschungsgemeinschaft (Project Ha 1324/9). 相似文献
9.
JaEun Ku 《Computer Methods in Applied Mechanics and Engineering》2011,200(5-8):830-836
We propose a posteriori error estimators for first-order div least-squares (LS) finite element method for linear elasticity, Stokes equations and general second-order scalar elliptic problems. Our main interest is obtaining a posteriori error estimators for the dual variables (fluxes, strains, stress, etc.) which are main quantity of interest in many applications. We also provide a posteriori error estimators for the primary variable. These estimators are obtained from the local least-squares functional by assigning weight coefficients scaling the respective residuals. The weight coefficients are given in terms of local meshsize hK. We establish the global upper bounds and local lower bounds for the estimators. The estimators can be easily computed from the finite element solution together with the given problem data and provide basis for mesh refinement criteria for efficient computation of finite element solution (the indicators and estimators are identical). Numerical experiments show a superior performance of our a posteriori estimators for user-specific norm over the standard LS functional. 相似文献
10.
We consider the time dependent Darcy problem in a three-dimensional axisymmetric domain and, by writing the Fourier expansion of its solution with respect to the angular variable, we observe that each Fourier coefficient satisfies a system of equations on the meridian domain. We propose a discretization of these equations in the case of general solution. This discretization relies on a backward Euler’s scheme for the time variable and finite elements for the space variables. We prove a posteriori error estimates that allow for an efficient adaptivity strategy both for the time steps and the meshes. Computations for an example with a known solution are presented which support the a posteriori error estimate. 相似文献
11.
Vladislav Pimanov Ivan Oseledets 《Structural and Multidisciplinary Optimization》2018,58(4):1619-1632
In our work, we consider the classical density-based approach to the topology optimization. We propose to modify the discretized cost functional using a posteriori error estimator for the finite element method. It can be regarded as a new technique to prevent checkerboards. It also provides higher regularity of solutions and robustness of results. 相似文献
12.
Some aspects of goal-oriented a posteriori error estimation are addressed in the context of steady convection–diffusion equations. The difference between the exact and approximate values of a linear target functional is expressed in terms of integrals that depend on the solutions to the primal and dual problems. Gradient averaging techniques are employed to separate the element residual and diffusive flux errors without introducing jump terms. The dual solution is computed numerically and interpolated using higher-order basis functions. A node-based approach to localization of global errors in the quantities of interest is pursued. A possible violation of Galerkin orthogonality is taken into account. Numerical experiments are performed for centered and upwind-biased approximations of a 1D boundary value problem. 相似文献
13.
Peter Hansbo Mats G. Larson 《Computer Methods in Applied Mechanics and Engineering》2011,200(45-46):3026-3030
We present a residual-based a posteriori error estimate in an energy norm of the error in a family of discontinuous Galerkin approximations of linear elasticity problems. The theory is developed in two and three spatial dimensions and general nonconvex polygonal domains are allowed. We also present some illustrating numerical examples. 相似文献
14.
Guozhu Yu Xiaoping Xie Carsten Carstensen 《Computer Methods in Applied Mechanics and Engineering》2011,200(29-32):2421-2433
Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger–Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [T.H.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg. 20 (9) (1984) 1685–1695] and due to Xie and Zhou [X.P. Xie, T.X. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, Int. J. Numer. Methods Engrg. 59 (2004) 293–313], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lamé constant λ. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable and efficient residual-based a posteriori error estimators for the stress in L2-norm and the displacement in H1-norm, and verify the theoretical results by some numerical experiments. 相似文献
15.
《Computers & Mathematics with Applications》2006,51(6-7):915-926
This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva's a posteriori error estimate [1] is generalized and improved. 相似文献
16.
We present numerically verified a posteriori estimates of the norms of inverse operators for linear parabolic differential equations. In case that the corresponding elliptic operator is not coercive, existing methods for a priori estimates of the inverse operators are not accurate and, usually, exponentially increase in time variable. We propose a new technique for obtaining the estimates of the inverse operator by using the finite dimensional approximation and error estimates. It enables us to obtain very sharp bounds compared with a priori estimates. We will give some numerical examples which confirm the actual effectiveness of our method. 相似文献
17.
Jun Cao 《Computers & Fluids》2005,34(8):972-990
The main goal of this paper is to study adaptive mesh techniques, using a posteriori error estimates, for the finite element solution of the Navier-Stokes equations modeling steady and unsteady flows of an incompressible viscous fluid. Among existing operator splitting techniques, the θ-scheme is used for time integration of the Navier-Stokes equations. Then, a posteriori error estimates, based on the solution of a local system for each triangular element, are presented in the framework of the generalized incompressible Stokes problem, followed by its practical application to the case of incompressible Navier-Stokes problem. Hierarchical mesh adaptive techniques are developed in response to the a posteriori error estimation. Numerical simulations of viscous flows associated with selected geometries are performed and discussed to demonstrate the accuracy and efficiency of our methodology. 相似文献
18.
Jun Cao 《Computers & Fluids》2005,34(8):991-1024
In this paper, we discuss how to improve the adaptive finite element simulation of compressible Navier-Stokes flow via a posteriori error estimate analysis. We use the moving space-time finite element method to globally discretize the time-dependent Navier-Stokes equations on a series of adapted meshes. The generalized compressible Stokes problem, which is the Stokes problem in its most generalized form, is presented and discussed. On the basis of the a posteriori error estimator for the generalized compressible Stokes problem, a numerical framework of a posteriori error estimation is established corresponding to the case of compressible Navier-Stokes equations. Guided by the a posteriori errors estimation, a combination of different mesh adaptive schemes involving simultaneous refinement/unrefinement and point-moving are applied to control the finite element mesh quality. Finally, a series of numerical experiments will be performed involving the compressible Stokes and Navier-Stokes flows around different aerodynamic shapes to prove the validity of our mesh adaptive algorithms. 相似文献
19.
20.
R. Verfürth 《Calcolo》2010,47(3):149-167
We present a novel a posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations. Our analysis is based on the equivalence of error and residual and a suitable decomposition of the residual into spatial and temporal contributions. In contrast to existing results we directly bound the error of the full space-time discretization and do not resort to auxiliary semi-discretizations. We thus obtain sharper bounds. Moreover the present analysis covers a wider range of discretizations both with respect to time and to space. 相似文献