首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the topic of model reduction for nonlinear dynamical systems based on kernel expansions. Our approach allows for a full offline/online decomposition and efficient online computation of the reduced model. In particular, we derive an a-posteriori state-space error estimator for the reduction error. A key ingredient is a local Lipschitz constant estimation that enables rigorous a-posteriori error estimation. The computation of the error estimator is realized by solving an auxiliary differential equation during online simulations. Estimation iterations can be performed that allow a balancing between estimation sharpness and computation time. Numerical experiments demonstrate the estimation improvement over different estimator versions and the rigor and effectiveness of the error bounds.  相似文献   

2.
The design and analysis of minimal-order state estimators for possibly time-varying linear systems, under constraints on the maximal allowable mean-square error, are considered. A global lower bound on the optimal error is derived, along with a lower bound on the minimal estimator order, needed for meeting the performance constraint. The ideal reduced-order estimator which satisfies the lower bound is derived, along with conditions for its realizability. When the ideal estimator is not realizable, its structure forms a suboptimal estimator, which maintains, in some sense, a local optimality property and is called the pseudoideal estimator. The mean-square error of the pseudoideal estimator defines upper bounds on the optimal error and on the estimator order needed for meeting the performance constraint. The lower and the upper bounds on the order define a reduced search set for the design problem. When the distance between the ideal and the pseudoideal estimators is sufficiently small in a certain numerical sense, the pseudoideal estimator may be considered optimal for practical purposes.  相似文献   

3.
In this contribution, we present an a posteriori error estimator for the incompressible Stokes problem valid for a conventional mixed FE formulation. Due to the saddle-point property of the problem, conventional error estimators developed for pure minimization problems cannot be utilized straight-forwardly. The new estimator is built up by two key ingredients. At first, a computed error approximation, exactly fulfilling the continuity equation for the error, is obtained via local Dirichlet problems. Secondly, we adopt the approach of solving local equilibrated flux-free problems in order to bound the remaining, incompressible, error. In this manner, guaranteed upper and lower bounds, of the velocity “energy norm” of the error as well as goal-oriented (linear) output functionals, with respect to a reference (overkill) mesh are obtained. In particular, it should be noted that this approach requires no computation of hybrid fluxes. Furthermore, the estimator is applicable to mixed FE formulations using continuous pressure approximations, such as the Mini and Taylor–Hood class of elements. In conclusion, a few simple numerical examples are presented, illustrating the accuracy of the error bounds.  相似文献   

4.
This work is concerned with tracking and system identification for time-varying parameters. The parameters are Markov chains and the observations are binary valued with noise corruption. To overcome the difficulties due to the limited measurement information, Wonham-type filters are developed first. Then, based on the filters, two popular estimators, namely, mean squares estimator (MSQ) and maximum posterior (MAP) estimator are constructed. For the mean squares estimator, we derive asymptotic normality in the sense of weak convergence and in the sense of strong approximation. The asymptotic normality is then used to derive error bounds. When the Markov chain is infrequently switching, we derive error bounds for MAP estimators. When the Markovian parameters are fast varying, we show that the averaged behavior of the parameter process can be derived from the stationary measure of the Markov chain and that can be estimated using empirical measures. Upper and lower error bounds on estimation errors are also established.  相似文献   

5.
Two-Mode Adaptive Fuzzy Control With Approximation Error Estimator   总被引:1,自引:0,他引:1  
In this paper, we propose a two-mode adaptive fuzzy controller with approximation error estimator. In the learning mode, the controller employs some modified adaptive laws to tune the fuzzy system parameters and an approximation error estimator to compensate for the inherent approximation error. In the operating mode, the fuzzy system parameters are fixed, only the estimator is updated online. Mathematically, we show that the closed-loop system is stable in the sense that all the variables are bounded in both modes. We also establish mathematical bounds on the tracking error, state vector, control signal and the RMS error. Using these bounds, we show that controller's design parameters can be chosen to achieve desired control performance. After that, an algorithm to automatically switch the controller between two modes is presented. Finally, simulation studies of an inverted pendulum system and a Chua's chaotic circuit demonstrate the usefulness of the proposed controller.  相似文献   

6.
We obtain a computable estimator for the energy norm of the error in piecewise affine and piecewise quadratic finite element approximations of linear elasticity in three dimensions. We show that the estimator provides guaranteed upper bounds on the energy norm of the error as well as (up to a constant and data oscillation terms) local lower bounds.  相似文献   

7.
This paper introduces a recovery-type error estimator yielding upper bounds of the error in energy norm for linear elastic fracture mechanics problems solved using the extended finite element method (XFEM). The paper can be considered as an extension and enhancement of a previous work in which the upper bounds of the error were developed in a FEM framework. The upper bound property requires the recovered solution to be equilibrated and continuous. The proposed technique consists of using a recovery technique, especially adapted to the XFEM framework that yields equilibrium at a local level (patch by patch). Then a postprocess based on the partition of unity concept is used to obtain continuity. The result is a very accurate but only nearly-statically admissible recovered stress field, with small equilibrium defaults introduced by the postprocess. Sharp upper bounds are obtained using a new methodology accounting for the equilibrium defaults, as demonstrated by the numerical tests.  相似文献   

8.
In this paper we derive and analyze some a posteriori error estimators for the stabilized P1 nonconforming approximation of the Stokes problem involving the strain tensor. This will be done by decomposing the numerical error in a proper way into conforming and nonconforming contributions. The error estimator for the nonconforming error is obtained in the standard way, and the implicit error estimator for the conforming error is derived by applying the equilibrated residual method. A crucial part of this work is construction of approximate normal stresses on interelement boundaries which will serve as equilibrated Neumann data for local Stokes problems. It turns out that such normal stresses can be simply computed by local weak residuals of the discrete system plus jumps of the velocity solution and that a stronger equilibration condition is satisfied to ensure solvability of local Stokes problems. We also derive a simple explicit error estimator based on the nonsymmetric tensor recovery of the normal stress error. Numerical results are provided to illustrate the performance of our error estimators.  相似文献   

9.
H 1, independently of the discretization method chosen. In particular, our error estimator can be applied also to problems and discretizations where the Galerkin orthogonality is not available. We will present different strategies for the evaluation of the error estimator. Only one constant appears in its definition which is the one from Friedrichs' inequality; that constant depends solely on the domain geometry, and the estimator is quite non-sensitive to the error in the constant evaluation. Finally, we show how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation. Received April 15, 2002; revised March 10, 2003 Published online: June 23, 2003  相似文献   

10.
In this paper, we study the a posteriori error estimates of two-grid finite volume element method for second-order nonlinear elliptic equations. We derive the residual-based a posteriori error estimator and prove the computable upper and lower bounds on the error in H1-norm. The a posteriori error estimator can be used to assess the accuracy of the two-grid finite volume element solutions in practical applications. Numerical examples are provided to illustrate the performance of the proposed estimator.  相似文献   

11.
M Kearns  D Ron 《Neural computation》1999,11(6):1427-1453
In this article we prove sanity-check bounds for the error of the leave-one-out cross-validation estimate of the generalization error: that is, bounds showing that the worst-case error of this estimate is not much worse than that of the training error estimate. The name sanity check refers to the fact that although we often expect the leave-one-out estimate to perform considerably better than the training error estimate, we are here only seeking assurance that its performance will not be considerably worse. Perhaps surprisingly, such assurance has been given only for limited cases in the prior literature on cross-validation. Any nontrivial bound on the error of leave-one-out must rely on some notion of algorithmic stability. Previous bounds relied on the rather strong notion of hypothesis stability, whose application was primarily limited to nearest-neighbor and other local algorithms. Here we introduce the new and weaker notion of error stability and apply it to obtain sanity-check bounds for leave-one-out for other classes of learning algorithms, including training error minimization procedures and Bayesian algorithms. We also provide lower bounds demonstrating the necessity of some form of error stability for proving bounds on the error of the leave-one-out estimate, and the fact that for training error minimization algorithms, in the worst case such bounds must still depend on the Vapnik-Chervonenkis dimension of the hypothesis class.  相似文献   

12.
An adaptive local postprocessing finite element method for the Navier-Stokes equations is presented in this paper. We firstly solve the problem on a relative coarse grid to get a rough approximation. Then, we correct the rough approximation by solving a series of approximate local residual equations defined on some local fine grids, which can be implemented in parallel. In addition, we also propose a reliable local a posteriori error estimator and construct an adaptive algorithm based on the corresponding a posterior error estimate. Finally, some numerical examples are presented to verify the algorithm.  相似文献   

13.
In this work, we introduce a consistent error estimator for numerical simulations performed by means of the proper generalized decomposition (PGD) approximation. This estimator, which is based on the constitutive relation error, enables to capture all error sources (i.e. those coming from space and time numerical discretizations, from the truncation of the PGD decomposition, etc.) and leads to guaranteed bounds on the exact error. The specificity of the associated method is a double approach, i.e. a kinematic approach and a unusual static approach, for solving the parameterized problem by means of PGD. This last approach makes straightforward the computation of a statically admissible solution, which is necessary for robust error estimation. An attractive feature of the error estimator we set up is that it is obtained by means of classical procedures available in finite element codes; it thus represents a practical and relevant tool for driving algorithms carried out in PGD, being possibly used as a stopping criterion or as an adaptation indicator. Numerical experiments on transient thermal problems illustrate the performances of the proposed method for global error estimation.  相似文献   

14.
In this paper, we consider sensor data scheduling with communication energy constraint. A sensor has to decide whether to send its data to a remote estimator or not due to the limited available communication energy. We construct effective sensor data scheduling schemes that minimize the estimation error and satisfy the energy constraint. Two scenarios are studied: the sensor has sufficient computation capability and the sensor has limited computation capability. For the first scenario, we are able to construct the optimal scheduling scheme. For the second scenario, we are able to provide lower and upper bounds of the minimum error and construct a scheduling scheme whose estimation error falls within the bounds.  相似文献   

15.
In this paper, a new filtering fusion problem is studied for nonlinear cyber-physical systems under error-variance constraints and denial-of-service attacks. To prevent data collision and reduce communication cost, the stochastic communication protocol is adopted in the sensor-to-filter channels to regulate the transmission order of sensors. Each sensor is allowed to enter the network according to the transmission priority decided by a set of independent and identically-distributed random variables. From the defenders’ view, the occurrence of the denial-of-service attack is governed by the randomly Bernoulli-distributed sequence. At the local filtering stage, a set of variance-constrained local filters are designed where the upper bounds (on the filtering error covariances) are first acquired and later minimized by appropriately designing filter parameters. At the fusion stage, all local estimates and error covariances are combined to develop a variance-constrained fusion estimator under the federated fusion rule. Furthermore, the performance of the fusion estimator is examined by studying the boundedness of the fused error covariance. A simulation example is finally presented to demonstrate the effectiveness of the proposed fusion estimator.   相似文献   

16.
In this paper we focus on collaborative multi-agent systems, where agents are distributed over a region of interest and collaborate to achieve a common estimation goal. In particular, we introduce two consensus-based distributed linear estimators. The first one is designed for a Bayesian scenario, where an unknown common finite-dimensional parameter vector has to be reconstructed, while the second one regards the nonparametric reconstruction of an unknown function sampled at different locations by the sensors. Both of the algorithms are characterized in terms of the trade-off between estimation performance, communication, computation and memory complexity. In the finite-dimensional setting, we derive mild sufficient conditions which ensure that a distributed estimator performs better than the local optimal ones in terms of estimation error variance. In the nonparametric setting, we introduce an on-line algorithm that allows the agents to simultaneously compute the function estimate with small computational, communication and data storage efforts, as well as to quantify its distance from the centralized estimate given by a Regularization Network, one of the most powerful regularized kernel methods. These results are obtained by deriving bounds on the estimation error that provide insights on how the uncertainty inherent in a sensor network, such as imperfect knowledge on the number of agents and the measurement models used by the sensors, can degrade the performance of the estimation process. Numerical experiments are included to support the theoretical findings.  相似文献   

17.
In this paper, the k-NN approach is used for the purpose of estimating the multiclass, 1-NN Bayes error bounds. We derive an estimator which is asymptotically unbiased, and whose variance can be controlled by the choice of k. The estimator appears to be very economic in its use of samples, and quite stable even in very small sample cases.  相似文献   

18.
讨论了一类具有不确定噪声的连续时间广义随机控制系统的鲁棒Kalman滤波器的设计问题,文中给出了确保估计误差性能指标的不确定噪声协方差矩阵扰动上界,文章研究结果表明,在此界限内采用最坏情况下的最优滤波器实现对状态的估计,它不仅能极小化不确定下的最坏性能,而且也能确保估计误差性能指标达到给定的某个自由度。  相似文献   

19.
A posteriori error estimates for two-body contact problems are established. The discretization is based on mortar finite elements with dual Lagrange multipliers. To define locally the error estimator, Arnold–Winther elements for the stress and equilibrated fluxes for the surface traction are used. Using the Lagrange multiplier on the contact zone as Neumann boundary conditions, equilibrated fluxes can be locally computed. In terms of these fluxes, we define on each element a symmetric and globally H(div)-conforming approximation for the stress. Upper and lower bounds for the discretization error in the energy norm are provided. In contrast to many other approaches, the constant in the upper bound is, up to higher order terms, equal to one. Numerical examples illustrate the reliability and efficiency of the estimator. This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8.  相似文献   

20.
In this paper, the joint input and state estimation problem is considered for linear discrete-time stochastic systems. An event-based transmission scheme is proposed with which the current measurement is released to the estimator only when the difference from the previously transmitted one is greater than a prescribed threshold. The purpose of this paper is to design an event-based recursive input and state estimator such that the estimation error covariances have guaranteed upper bounds at all times. The estimator gains are calculated by solving two constrained optimisation problems and the upper bounds of the estimation error covariances are obtained in form of the solution to Riccati-like difference equations. Special efforts are made on the choices of appropriate scalar parameter sequences in order to reduce the upper bounds. In the special case of linear time-invariant system, sufficient conditions are acquired under which the upper bound of the error covariance of the state estimation is asymptomatically bounded. Numerical simulations are conducted to illustrate the effectiveness of the proposed estimation algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号