首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper addresses an analytical method to determine the electroelastic fields over a double-phase piezoelectric reinforcement interacting with an ellipsoidal single-inhomogeneity. The approach is based on the extension of the electro-mechanical equivalent inclusion method (EMEIM) to the piezoelectric double-inhomogeneity system. Accordingly, the double-inhomogeneity is replaced by an electroelastic double-inclusion problem with proper polynomial eigenstrains-electric fields. The long- and short-range interaction effects are intrinsically incorporated by the homogenizing eigenfields. The equivalent double-inclusion is subsequently decomposed to the single-inclusion problems by means of a superposition scheme. The methodology is further extended to the piezoelectric multi-inhomogeneity, where the particle core is surrounded by many layers of coatings of ellipsoidal shapes. Through consideration of various examples, including (1) 2D and 3D interaction problems of a coated piezoelectric reinforcement near a lamellar inhomogeneity and (2) a two-phase spherical particle with thick coating of variable thickness, the validity and robustness of the present theory are thoroughly demonstrated.  相似文献   

2.
研究了压电材料中位于基体的螺型位错与含界面刚性线圆形涂层夹杂的电弹耦合干涉问题。运用复变函数方法,获得了基体、涂层和夹杂中复势函数的精确级数形式解答。基于广义Peach-Koehler公式,计算了作用在位错上的像力。讨论了刚性线几何条件、界面层厚度和材料电弹特性对位错力和位错平衡位置的影响规律。结果表明:对于软夹杂和软涂层的情况,刚性线长度存在一个临界值改变像力的方向。螺型位错先被吸引后被排斥,在夹杂附近有一个稳定的平衡点。对于硬夹杂和硬涂层的情况,位错一直被排斥,刚性线对位错力的影响较小。  相似文献   

3.
A Mode III Griffith crack interacting with a coated inclusion in piezoelectric media is investigated. The crack, the coated inclusion are embedded in an infinitely extended piezoelectric matrix media, with the crack being along the radial direction of the inclusion. In the study, three different piezoelectric material phases are involved: the inclusion, the coating layer, and the matrix. A far-field loading condition is considered. During the solution procedure, the crack is simulated as a continuous distribution of screw dislocations. By using the solution of a screw dislocation near a coated inclusion in piezoelectric media as the Green function, the problem is formulated into a set of singular integral equations, which are solved by numerical method. The stress and electric displacement intensity factors are derived in terms of the asymptotic values of the dislocation density functions evaluated from the integral equations. Numerical examples are given for various material constants combinations and geometric parameters.  相似文献   

4.
Electroelastic stresses induced by electromechanical loadings and lattice mismatch between components and surrounding materials are found to significantly influence the electronic performance of devices and, in some cases, are identified as a major cause of failure and degradation. To reduce electromechanical failure an effective method is to apply an intermediate layer, with appropriate geometry and material properties, between the components of dissimilar piezoelectric materials. In this paper, the effect of an intermediate layer on the electroelastic stresses within an elliptical inhomogeneity is examined within the framework of linear piezoelectricity. Exact closed-form solutions are obtained for the electroelastic stresses in the inclusion, the interphase layer and the matrix, respectively, under remote mechanical antiplane shear and inplane electric field, by means of the complex variable method. It is shown that the electroelastic stresses depend on only two complex coefficients. Simple formulae and numerical examples are used to illustrate the effects of the interphase layer on the electroelastic stresses within the inclusion, and the dependency of this effect on the aspect ratio of the elliptical inclusion.  相似文献   

5.
Summary. The problem of a Zener-Stroh crack initiated near a coated circular inclusion in a piezoelectric medium is investigated in this paper. By using the solution of a single piezoelectric screw dislocation near a coating inclusion as the Greens function, a Mode III displacement loaded crack is investigated. The proposed problem is formulated as a set of singular integral equations which are solved by numerical techniques. The influence of various parameters, such as the material constants of the inclusion, the coating, the matrix, the coating layer thickness, etc., on the crack behavior is studied. The stress and electric displacement intensity factors of the crack are derived. Several numerical examples are given and the results obtained are discussed in detail.  相似文献   

6.
Due to the large ratio of surface area to volume in nanoscale objects, the property of surfaces and interfaces likely becomes a prominent factor in controlling the behavior of nano-heterogeneous materials. In this work, based on the Gurtin-Murdoch surface/interface elastic theory, a distinct expression is derived for embedded nano-inclusion in an infinite piezoelectric matrix coupled with interface effect. For the problem of a spherical inclusion in transversely isotropic piezoelectric medium, we reach a conclusion that the elastic and electric field are uniform when eigen-strain and eigen-electric field imposed on the inclusion are uniform even in the presence of the interface influence. The electroelastic fields in the inclusion are related to both interface electroelastic parameters and the radius of the inclusion. Then overall properties of the composites are estimated by using the dilute distribution model. Numerical results reveal that the effective electroelastic moduli are function of the interface parameters and the size of the nano-inhomogeneities.  相似文献   

7.
Langasite is a very promising material for resonators due to its good temperature behavior and high piezoelectric coupling, low acoustic loss, and high Q factor. The biasing effect for langasite resonators is crucial for resonator design. In this article, the resonant frequency shift of a thickness-mode langasite resonator is analyzed with respect to a direct current (DC) electric field applied in the thickness direction. The vibration modes of a thin langasite plate fully coated with an electrode are analyzed. The analysis is based on the theory for small fields superposed on a bias in electroelastic bodies and the first-order perturbation integral theory. The electroelastic effect of the resonator is analyzed by both analytical and finite-element methods. The complete set of nonlinear elastic, piezoelectric, dielectric permeability, and electrostrictive constants of langasite is used in the theoretical and numerical analysis. The sensitivity of electroelastic effect to nonlinear material constants is analyzed.  相似文献   

8.
The present work focuses on variational bounds for the effective electroelastic moduli of multiphase piezoelectric composites with thin piezoelectric interphase. Both the inhomogeneities and the matrix are assumed to be piezoelectric and transversely isotropic. The piezoelectric interphase is modeled as the spring-type interface with electromechanical coupling. The inhomogeneities are assumed to be spheroidal so that the reinforcement geometry is able to range from thin flake to continuous fiber. The effective properties of the piezoelectric composite with interfacial imperfection are defined and the principles of minimum internal energy and enthalpy are derived. These principles are applied to analytically obtain the upper and lower bounds for the effective electroelastic moduli. Unlike the Voigt–Reuss-type bounds for perfect interface, the present bounds depend not only on the material properties and volume fraction, but also on the interface parameters, inhomogeneity shape and orientation. An example of a two-phase composite is given for detailed discussion, where dependence of the electroelastic moduli and their bounds on the inhomogeneity shapes and orientations as well as the interface properties is provided and discussed. To qualitatively account for the dependence, analysis based on two possible mechanisms, i.e., the simple mixture rule of composite and the weakening effect by imperfect interface, are also provided.  相似文献   

9.
The electroelastic coupling interaction between a piezoelectric screw dislocation and the embedded circular cross-section inclusions with imperfect interfaces in piezoelectric solids is investigated by using a three-phase composite cylinder model. By means of a complex variable technique, the explicit solutions of electroelastic fields are obtained. With the aid of the Peach-Koehler formula, the explicit expression for the image force exerted on the piezoelectric screw dislocation is derived. The image force on the dislocation and its equilibrium positions near one of the inclusions are discussed for variable parameters (interface imperfection and material electroelastic dissimilarity) and the influence of nearby inclusions is also considered. The results show that when compared with the previous solution (the perfect interface), more equilibrium positions of the screw dislocation in the matrix may be available due to the effect of the interface imperfection when the dislocation is close to the electroelastic stiff inclusion. It is also found that the magnitude of the image force exerted on the piezoelectric screw dislocation produced by multiply inclusions is always smaller than that produced by a single inclusion and the impact of nearby inclusions on the mobility of the screw dislocation is very important.  相似文献   

10.
Summary This paper studies the interactions between N randomly-distributed cylindrical inclusions in a piezoelectric matrix. The inclusions are assumed to be perfectly bounded to the matrix, which is subjected to an anti-plane shear stress and an in-plane electric field at infinity. Based on the complex variable method, the complex potentials in the matrix and inside the inclusions are first obtained in form of power series, and then approximate solutions for electroelastic fields are derived. Numerical examples are presented to discuss the influences of the inclusion array, inclusion size and inclusion properties on couple fields in the matrix and inclusions. Solutions for the case of an infinite piezoelectric matrix with N circular holes or an infinite elastic matrix containing N circular piezoelectric fibers can also be obtained as special cases of the present work. It is shown that the electroelastic field distribution in a piezoelectric material with multiple inclusions is significantly different from that in the case of a single inclusion.  相似文献   

11.
Z. M. Xiao  J. Yan  B. J. Chen 《Acta Mechanica》2004,172(3-4):237-249
Summary. The electro-elastic stress investigation on the interaction problem of a piezoelectric screw dislocation near a coated inclusion in a piezoelectric material has been carried out. In our study, three dissimilar material phases are involved: the matrix, the inclusion and the coating layer. All the three materials are piezoelectric and with different material constants. Explicit closed-form analytical solutions for the stress and electric displacement fields are obtained by using the complex variable method. The image force acting on the screw dislocation is calculated by using the generalized Peach-Koehler formula. Numerical examples for different material constant combinations are performed. The influences of material properties of the inclusion and the coating layer on the image forces are examined and discussed.  相似文献   

12.
Electro-elastic fields in an infinite matrix with N coated-piezoelectric inclusions are studied based on the complex variable method. Based on the assumption that the coated inclusions are completely bounded the matrix which is subjected to remote anti-plane shears and in-plane electric fields, the general solutions for complex potentials are first derived for arbitrary arrays of inclusions. Then, the numerical results are obtained for special cases in which the inclusions are located in different ways. Discussions are made about the influence of the coating thickness, the array type of inclusions and the material properties on the interface stresses and electric displacements in the matrix. It is found that both the array types of inclusions and the Young’s modulus of the three-phase material system have remarkable effects on stresses, but not on electric displacements, while the piezoelectric constants of the coating and its thickness have significant effects on electric displacements, but not on stresses.  相似文献   

13.
Xu Wang 《Acta Mechanica》2011,219(1-2):77-90
We consider the internal stress field of a three-phase elliptical inclusion bonded to an infinite matrix through an interphase layer when the matrix is subjected to remote uniform stresses. The elastic materials comprising all the three phases belong to a particular class of harmonic materials, and the formed interfaces are two confocal ellipses. A condition leading to internal uniform hydrostatic stresses is derived. This condition relates the two remote principal stresses with the geometric parameters (the thickness of the interphase layer and the aspect ratio of the elliptical inclusion) of the three-phase elliptical inclusion. When this condition is met, the hoop stress in the interphase layer along the entire interphase/inclusion interface is also uniform. Five special situations of practical importance are discussed in considerable detail to demonstrate the unique phenomena inherent in harmonic materials. Our discussions indicate that when this condition is met, it is permissible for the two remote principal stresses to have opposite signs and that for given geometric and material parameters, the remote loading ratio is no longer constant and multiple external loading states exist leading to internal uniform hydrostatic stresses. It is found that this condition can be written into a hyperbola for the two remote principal stresses when the interphase layer is extremely compliant or relatively stiff or when the inclusion is almost rigid. When the magnitudes of the remote stresses are sufficiently large, this condition becomes a very simple one relating the remote loading ratio with the geometric parameters of the composite. Interestingly, it is clearly observed from the simple condition that for given geometric parameters of the three-phase elliptical inclusion, there exist two different values of the remote loading ratio, both of which lead to an internal uniform hydrostatic stress state.  相似文献   

14.
研究了无限大压电基体材料中压电螺型位错与含界面导电刚性线椭圆夹杂的电弹耦合干涉问题。运用求解复杂多连通域问题的复变函数方法,获得了椭圆夹杂和基体区域复势函数以及电弹性场的精确级数形式解答。利用广义Peach-Koehler公式导出作用于压电螺型位错上的位错力公式。主要讨论了刚性线几何尺寸和椭圆曲率对位错力的影响规律。分析结果表明:界面刚性线排斥基体中的位错,对靠近椭圆夹杂界面的螺型位错的运动和平衡位置有重要的影响。当刚性线的长度达到临界值,界面刚性线的存在会改变螺型位错与压电椭圆夹杂的干涉规律。椭圆夹杂的压缩系数变大,刚性线尺寸对位错力的影响也越大。  相似文献   

15.
Ping Tan  Liyong Tong   《Composite Structures》2002,57(1-4):101-108
Single- and multiple-loading assumptions were previously used to derive the closed-form formulas for the effective constants of composite materials. This paper aims at investigating the effects of various loading assumptions, i.e., single- and multiple-loading assumptions, on the effective electroelastic constants for piezoelectric fibre reinforced composite materials. The required closed-form formulas under various loading assumptions are derived using the linear piezoelectric theory and iso-field assumptions. A numerical study reveals that the predicted electroelastic constants under various loading assumptions are generally bounded by those obtained under the single- and multiple-loading assumptions. The effective constants along the fibre direction obtained under the single-loading assumption are the same as those evaluated using the rule of mixtures, and those predicted under the multiple-loading assumption are close to the finite element analysis and testing results available in the literature.  相似文献   

16.
Recent work on multifunctional materials has shown that a functionally graded interface between the fiber and matrix of a composite material can lead to improved strength and stiffness while simultaneously affording piezoelectric properties to the composite. However the modeling of this functional gradient is difficult through micromechanics models without discretizing the gradient into numerous layers of varying properties. In order to facilitate the design of these multiphase piezoelectric composites, accurate models are required. In this work, Multi-Inclusion models are extended to predict the effective electroelastic properties of multiphase piezoelectric composites. To evaluate the micromechanics modeling results, a three dimensional finite element model of a four-phase piezoelectric composite was created in the commercial finite element software ABAQUS with different volume fractions and aspect ratios. The simulations showed excellent agreement for multiphase piezoelectric composites, and thus the modeling approach has been applied to study the overall electroelastic properties of a composite with zinc oxide nanowires grown on carbon fibers embedded in the polymer. The results of this case study demonstrate the importance of the approach and show the system cannot be accurately modeled with a homogenized interphase.  相似文献   

17.
This paper investigated the interaction of a piezoelectric screw dislocation with a nonuniformly coated circular inclusion in an unbounded piezoelectric matrix subjected to remote antiplane shear and electric fields. In addition to having a discontinuous displacement and a discontinuous electric potential across the slip plane, the dislocation is subjected to a line force and a line charge at the core. The alternating technique in conjunction with the method of analytical continuation is applied to derive the general solutions in an explicit series form. This approach has a clear advantage in deriving the solution to the heterogeneous problem in terms of the solution for the corresponding homogeneous problem. The presented series solutions have rapid convergence which is guaranteed numerically. The image force acting on the piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. The numerical results show that the varying thickness of the interphase layer will exert a significant influence on the shear stress and electric field within the circular inclusion, and on the direction and magnitude of the image force. This solution can be used as Green’s function for the analysis of the corresponding piezoelectric matrix cracking problem.  相似文献   

18.
付平  田华  许雪  赵程 《材料保护》2006,39(4):29-31
为了提高镀铁层的硬度和耐磨性,进行了铁基复合镀的研究.利用自制的不对称交-直流电源,采用无刻蚀镀铁工艺,通过在镀液中加入不溶性非金属固体颗粒SiC,用电化学的方法使铁与这些颗粒共同沉积,可以获得沉积速度快、与基体结合牢固、硬度高、耐磨性好、厚度均匀的铁基复合镀层.结果表明,铁基复合镀对延长零部件的使用寿命具有明显的优越性.  相似文献   

19.
Amicromechanicsmodel composed of a three-phase confocal elliptical cylinder of the nanocompositeswithinterface effect is proposed.Ageneralized self-consistent method for the piezoelectric nanocompositesaccounting for fiber section shape under far-field mechanical–electrical loads is presented based on the model.By using the theory of Gurtin–Murdoch surface/interface and the conformal mapping technique, a closedformsolution of the effective electroelastic constants is obtained. The present solution can be degenerated intothe existing solution. The results show that the effective electroelastic constants are dramatically size dependentwhen the size of the fiber is on the order of nanometers. The effective electroelastic constants decreasemonotonically with the fiber section aspect ratio \({\gamma}\) increasing from 0 to 1. The elastic constant and dielectricconstant obtained by the present solution are very similar to the results obtained by the classical electroelastictheory, whereas the piezoelectric coupling constant obtained by the present solution is very different from theresults obtained by the classical electroelastic theory.  相似文献   

20.
Analytical solutions are obtained to quantify the influence of cracks on electroelastic properties of piezoelectric materials containing doubly-periodic arrays of cracks. Both the rectangular and diamond-shaped arrays of cracks are considered. Solutions are obtained for the case of an antiplane shear load coupled with an in-plane electrical load. This study makes it possible to understand the multicrack interactions in piezoelectric solids and their effects on the fracture and electroelastic properties. The crack tip field intensity factors and the change in stored electroelastic energy due to the presence of many microcracks are calculated. These calculations enable the prediction of the effective elastic, piezoelectric and dielectric constants of a damaged piezoelectric material. The results of this work can be useful in developing a technique to determine the state of mechanical and electrical damage in piezoelectric materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号