首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以原位沉淀-光化学还原法制备了Ag@AgCl/MCM-41复合纳米材料,采用SEM、IR、XRD对其结构进行了表征.分析表明,复合纳米材料中Ag@AgCl为壳-核结构,具有纳米金属表面等离子体共振效应,对可见光的吸收增强.介孔材料MCM-41载体的引入使催化剂分散性、比表面积、吸附性能和重复使用性提高.以亚甲基蓝为目标降解物,考察了其可见光催化活性,结果表明,光照射60min,复合纳米光催化材料对10mg/L亚甲基蓝溶液的降解率达98%.  相似文献   

2.
消息报道     
正合肥物质科学院铜纳米颗粒/石墨烯核壳结构材料催化研究获进展近期,中国科学院合肥物质科学研究院固体物理研究所研究员李越课题组和北京理工大学教授曲良体课题组合作,在核壳结构的纳米材料研究方面取得新进展,研制出构筑尺寸均一的石墨烯包覆铜纳米颗粒核壳结构的复合材料,其催化效率大幅提高,是金纳米颗粒的14倍。相比于单组分材料,由于核与壳的相互耦合,核壳结构的纳米材料(如以金属颗粒为核,无机或有机材料为壳)的部分性能会大幅度提高。以贵金属(铂、金、银等)纳米颗粒为核的核壳材料,被广泛应用于光学、电化学及催化等领域。然而,  相似文献   

3.
核壳纳米颗粒是一种具有独特结构和性能的复合纳米材料, 在催化、生物医学和光子晶体等领域具有重要应用前景。本工作以羟基磷灰石(HAp)纳米颗粒作为核体、十六烷基三甲基溴化铵(CTAB)作为介孔模板剂, 采用改进的Stöber包覆法制备具有介孔结构的核壳HAp@mSiO2新型纳米颗粒。通过控制正硅酸四乙酯(TEOS)的浓度及其水解和缩合动力学, 可以有效调控HAp表面包覆的mSiO2壳层厚度。经TEM、EDS、XRD、FT-IR及BET一系列测试可知, 制备得到的HAp@mSiO2纳米颗粒具有比表面积大、孔径尺寸窄且分布均匀等特点。同时, 以布洛芬作为模板药物, 将制备得到的材料应用于药物释放实验, 发现该核壳材料还具有良好的药物控制性能和pH响应特性, 且可以通过改变mSiO2壳层厚度对药物释放速率进行有效调控。  相似文献   

4.
二氧化锡纳米材料具有毒性小、成本低、可逆容量高等优点,是当前研究最为广泛的锂离子动力电池负极材料之一。构建与碳复合的二氧化锡基纳米结构是缓解二氧化锡在长时间的嵌/脱锂循环过程中体积膨胀、控制纳米颗粒团聚问题以及增加材料导电性的有效方法。用高效、可控的静电纺丝技术,结合高温煅烧、水热合成、化学沉积等方法,可制备出结构型二氧化锡/碳复合纳米纤维。本文讨论了具有不同碳层分布的均匀型、核壳型及三明治型结构的二氧化锡/碳复合纳米纤维的制备方法,以及不同碳层分布对其锂电性能的改善状况及机理分析。  相似文献   

5.
以Ni和MnO2微米粉为原料,采用直流电弧等离子法在氢-氩混合气氛中合成了MnO包覆Ni纳米复合粒子.用XRD、TEM、TG-SDTA等方法分析了纳米粒子的相组成、形貌和热稳定性.结果表明:Ni/MnO复合纳米粒子具有一致的"核/壳"微结构,尺寸分布在100-120nm范围.核和壳分别为Ni和MnO相.根据定量氧辅助V-L-S机制,Ni纳米核在复合粒子生长过程中的催化作用,是"核/壳"结构形成的重要因素.  相似文献   

6.
《功能材料》2021,52(8)
首先通过溶剂热法制备了磁性Fe_3O_4纳米粒子,随后采用SiO_2对其进行包覆形成了Fe_3O_4@SiO_2核壳磁性纳米材料。通过XRD、SEM、TEM、磁性能分析和吸附性能分析等对Fe_3O_4@SiO_2核壳磁性纳米材料进行了表征。结果表明,合成的Fe_3O_4@SiO_2核壳磁性纳米材料具有Fe_3O_4和SiO_2两种晶型结构,SiO_2成功包覆在磁性Fe_3O_4纳米粒子上,SiO_2并没有对各组织的结构和成分产生较大影响;Fe_3O_4@SiO_2核壳磁性纳米材料的粒径在200~400 nm左右,且呈核壳式的结构,内层Fe_3O_4纳米粒子的颜色较深,外层SiO_2的颜色较浅;Fe_3O_4@SiO_2核壳磁性纳米材料在室温下的饱和磁化强度为76.31 A·m~2/kg,剩余磁化强度几乎为0;Fe_3O_4@SiO_2核壳磁性纳米材料对Cu(Ⅱ)的吸附在1 500 min时达到饱和,去除率最高为63%,最大吸附容量可达120 mg/g,其对Cu(Ⅱ)具有较好的吸附效果。  相似文献   

7.
以Ni和MnO2微米粉为原料,采用直流电弧等离子法在氢--氩混合气氛中合成了MnO包覆Ni纳米复合粒子.用XRD、TEM、TG--SDTA等方法分析了纳米粒子的相组成、形貌和热稳定性.结果表明: Ni/MnO 复合纳米粒子具有一致的“核/壳”微结构,尺寸分布在100--120 nm范围. 核和壳分别为Ni和MnO相.根据定量氧辅助V--L--S机制, Ni纳米核在复合粒子生长过程中的催化作用,是“核/壳”结构形成的重要因素.  相似文献   

8.
综述了近年来纳米TiO2核壳型复合光催化材料的研究进展.核壳型复合光催化剂兼备核和壳组分的特征而具有优异的物理或化学性能,其形成过程主要包括扩散阶段和浓缩反应阶段,其作用机理主要有化学键作用、库仑力静电引力作用和吸附层媒介作用等.按核的物质种类不同,将核壳型TiO2复合光催化剂系统分为以无机氧化物为核、以有机物为核及以单质为核,阐述了它们在环境治理的光催化领域中的应用,指出了纳米TiO2核壳型复合光催化材料存在的问题及未来的发展前景.  相似文献   

9.
具有核/壳结构的碳包覆金属纳米胶囊由于可调节的成分与结构特征,可以实现微波频段内相互协调的磁损耗和介电损耗特性,从而获得优异的微波吸收性能,近年来受到研究者的广泛关注。碳外壳的包覆不仅改善了纳米材料的物理和化学性质,由此引入的核/壳异质界面还在微观结构上赋予纳米胶囊新的微波吸收机制,建立了合适的电磁匹配。首先介绍了通过直流电弧放电制备碳包覆金属纳米胶囊的方法,简要分析了该方法中纳米胶囊的形成机制。介绍了一些关于碳包覆纳米胶囊的结构设计及其在微波吸收材料方面的应用探索,包括不同核壳尺寸结构的设计、引入异质原子等不同方法对纳米胶囊在微波频段内的介电损耗和磁损耗能力的调控。  相似文献   

10.
无机材料纳米空心球的制备方法研究进展   总被引:10,自引:0,他引:10  
探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一.纳米空心球作为一种新的纳米结构,其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能,从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景.本文综述了模板法和由模板法发展而来的L-bL自组装法制备无机材料纳米空心球的一般过程及原理,最后展望了纳米空心球材料的发展前景,并探讨了目前在无机材料纳米空心球研究领域中存在的问题.  相似文献   

11.
Fei Guo C  Wang Y  Jiang P  Cao S  Miao J  Zhang Z  Liu Q 《Nanotechnology》2008,19(44):445710
The epitaxial growth of ZnO nanosheets and nanoneedles from a Zn/ZnO core/shell structure is verified by an experiment in which the ZnO nanoneedles and nanosheets are synthesized in air within an ultra-low temperature range from?250 to 400?°C by thermal oxidation of Zn films made up of hexagonal nanodiscs or nanoprisms. The hexagonal Zn structures are oxidized to form a Zn/ZnO core/shell structure with an epitaxial relationship; ZnO nanoneedles and nanosheets are found to grow epitaxially from the ZnO shell, along sixfold symmetric [Formula: see text] directions, showing the same lattice orientation as the Zn core. The stability difference among different facets of hexagonal Zn crystal structures plays a key role in the formation of ZnO nanosheets, nanoneedles and the Zn/ZnO core/shell structure, as well as ZnO hollow structures. A vapor-solid mechanism is suggested to explain the epitaxial growth process of the ZnO products. Photoluminescence properties of the ZnO nanostructures are also explored.  相似文献   

12.
Magnetic nanoparticles with core/shell structures   总被引:1,自引:0,他引:1  
Magnetic nanoparticles with core/shell structures are an important class of functional materials, possessing unique magnetic properties due to their tailored dimensions and compositions. This paper reviews mainly our recent advances in the preparation and characterizations of core/shell structured magnetic materials, focusing in nonmagnetic, antiferromagnetic, or ferro/ferri-magnetic shell coated magnetic core particles. And some of the unique properties of core-shell materials and their self-assembly are presented. Shell layers are shown to serve various functions. A broad demonstration of the successful blend of these types of materials synthesis, microstructural evolution and control, new physics and novel applications that is central to research in this field is presented.  相似文献   

13.
In this work, we report a detailed study of the formation of hollow nanostructures in iron oxides. Core/shell Fe/Fe-oxide nanoparticles were synthesized by thermal decomposition of Fe(CO)(5) at high temperature. It was found that 8 nm is the critical size above which the particles have a core/shell morphology, whereas below this size the particles exhibit a hollow morphology. Annealing the core/shell particles under air also leads to the formation of hollow spheres with a significant increase in the average particle size. In the case of the thermally activated Kirkendall process, the particles do not fully transform into hollow structures but many irregular shaped voids exist inside each particle. The 8 nm hollow particles are superparamagnetic at room temperature with a blocking temperature of 70 K whereas the core/shell particles are ferromagnetic.  相似文献   

14.
In this Review, recent achievements in the multilevel interior‐structured hollow 0D and 1D micro/nanomaterials are presented and categorized. The 0D multilevel interior‐structured micro/nanomaterials are classified into four main interior structural categories that include a macroporous structure, a core‐in‐hollow‐shell structure, a multishell structure, and a multichamber structure. Correspondingly, 1D tubular micro/nanomaterials are of four analogous structures, which are a segmented structure, a wire‐in‐tube structure, a multiwalled structure, and a multichannel structure. Because of the small sizes and complex interior structures, some special synthetic strategies that are different from routine hollowing methods, are proposed to produce these interior structures. Compared with the same‐sized solid or common hollow counterparts, these fantastic multilevel hollow‐structured micro/nanomaterials show a good wealth of outstanding properties that enable them broad applications in catalysis, sensors, Li‐ion batteries, microreactors, biomedicines, and many others.  相似文献   

15.
Energetic materials, including explosives, pyrotechnics, and propellants, are widely used in mining, demolition, automobile airbags, fireworks, ordnance, and space technology. Nanoenergetic materials (nEMs) have a high reaction rate and high energy density, which are both adjustable to a large extent. Structural control over nEMs to achieve improved performance and multifunctionality leads to a fascinating research area, namely, nanostructured energetic materials. Among them, core–shell structured nEMs have gained considerable attention due to their improved material properties and combined multiple functionalities. Various nEMs with core–shell structures have been developed through diverse synthesis routes, among which core–shell structured nEMs associated with explosives and metastable intermolecular composites (MICs) are extensively studied due to their good tunability and wide applications, as well as excellent energetic (e.g., enhanced heat release and combustion) and/or mechanical properties. Herein, the preparation methods and fundamental properties of the abovementioned kinds of core–shell structured nEMs are summarized and the reasons behind the satisfactory performance clarified, based on which suggestions regarding possible future research directions are proposed.  相似文献   

16.
The term “engineered zeolitic materials” refers to a class of materials with a rationally designed pore system and active‐sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass‐transfer issues. The state‐of‐the‐art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core–shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core–shell materials and their analogues, yolk–shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core–shell, yolk–shell, and hollow zeolitic materials for some important industrial applications.  相似文献   

17.
A simple way of synthesizing carbon nanotube (CNT)/graphene (GN) nanoscroll core/shell nanostructures is demonstrated using molecular dynamics (MD) simulations. The simulations show that GN sheets can fully self‐scroll onto CNTs when the CNT radius is larger than a threshold of about 10 Å, forming a stable core/shell structure. Increasing the length of the GN sheet results in multilayered carbon nanoscroll (CNS) shells that exhibit a tubular structure similar to that of multiwall CNTs. The distances between the CNT and the GN wall or adjacent GN walls are about 3.4 Å. It is found that the van der Waals force plays an important role in the formation of the CNT/GN nanoscroll core/shell‐composite nanostructures. However, the chirality of the CNT and the GN sheet does not affect the self‐scrolling process, which thus provides a simple way of controlling the chirality and physical properties of the resulting core/shell structure. It is expected that this preparation method of CNT/GN nanoscroll core/shell composites will lead to further development of a broad new class of carbon/carbon core/shell composites with enhanced properties and even introduce new functionalities to composite materials.  相似文献   

18.
Zhang F  Che R  Li X  Yao C  Yang J  Shen D  Hu P  Li W  Zhao D 《Nano letters》2012,12(6):2852-2858
Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.  相似文献   

19.
Bimetallic nanocrystals (NCs) with core/shell, heterostructure, or inter-metallic and alloyed structures are emerging as more important materials than monometallic NCs. They are expected to display not only a combination of the properties associated with two distinct metals, but also new properties and capabilities due to a synergy between the two metals. More importantly, bimetallic NCs usually show composition-dependent surface structure and atomic segregation behavior, and therefore more interesting applied potentials in various fields including electronics, engineering, and catalysis. Compared with monometallic NCs, preparation of bimetallic NCs is much more complicated and difficult to be achieved. In recent years, researchers from many groups have made great efforts in this area. This review highlights the recent progress in the chemical synthesis of bimetallic NCs. The control over morphology, size, composition, and structure of bimetallic NCs as well as the exploration of their properties and applications are discussed.  相似文献   

20.
The FeS coated Fe nanoparticles were prepared by using high temperature reactions between the commercial Fe nanoparticles and the S powders in a sealed quartz tube. The simple method developed in this work is effective for large scale synthesis of FeS/Fe nanoparticles with tunable shell/core structures, which can be obtained by controlling the atomic ratio of Fe to S. The structural, magnetic and photocatalytic properties of the nanoparticles were investigated systematically. The good photocatalytic performance originating from the FeS shell in degradation of methylene blue under visible light and the high saturation magnetization originating from the ferromagnetic Fe core make the FeS/Fe nanoparticles a good photocatalyst that can be collected and recycled easily with a magnet. An exchange bias up to 11 mT induced in Fe by FeS was observed in the Fe/FeS nanoparticles with ferro/antiferromagnetic interfaces. The enhanced coercivi-ty up to 32 mT was ascribed to the size effect of Fe core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号