首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Herein, a facile approach for synthesizing mechanically enhanced nanocomposite hydrogels via a dual‐crosslinking process is described. Additional ionic crosslinking using various cations is introduced after an in situ precipitation process for hydroxyapatite immobilization in hyaluronic acid hydrogels (HAc–CaP). Ca2+, Ba2+, and Sr2+ ions exhibit the highest efficiencies in reinforcing the mechanical properties of HAc–CaP hydrogels. In addition, the dual‐crosslinked HAc–CaP hydrogels promote the biological responses of preosteoblast cells, which exhibit highly stretched shapes and greatly enhanced proliferation. Furthermore, the nanocomposite hydrogels achieve enhanced bioactivity by supporting osteogenic differentiation. Thus, enhancement on both the mechanical and biological properties of hyaluronic‐acid‐based nanocomposite hydrogels is achieved through this dual‐crosslinking process, extending the potential application of these materials to hard tissue engineering.  相似文献   

2.
In this research, tissue engineered hydrogels consist of chondroitin sulfate and hydroxyapatite capable of light curing and cell encapsulation were prepared. Chemical and physical characteristics were analyzed by FTIR spectroscopy, compressive strength and water uptake measurements. Observations with fluorescence microscopy as well as MTT viability assay revealed no toxicity for encapsulated cells. Moreover, alkaline phosphatase activity, calcium deposition, and gene expression analysis were determined to prove the osteogenic potential of the prepared hydrogel. In conclusion, this in situ forming hydrogel can be utilized as filler for bone deficiencies as well as carrier for cell encapsulation and osteogenic differentiation.  相似文献   

3.
4.
使用一种新型人工设计自组装多肽(RADA16)水凝胶作为三维培养支架评价MSCs成骨分化情况。将人骨髓MSCs培养增殖后接种到水凝胶中,在成骨分化培养液中进一步培养1~3周。荧光染色法观察细胞形态和存活情况;组织学染色检测MSCs ALP活性;半定量RT-PCR分析成骨特异性基因的表达。绝大多数MSCs在水凝胶支架内能够存活,呈纺锤样形态。诱导培养后蛋白和基因表达水平均检测到ALP活性,在14天时达到峰值。骨晚期分化特异性基因BSP也有表达,且表达量随培养时间延长而增多。自组装多肽水凝胶为MSCs的黏附生长及向成骨细胞分化提供良好的三维微环境,有望成为极具吸引力的骨组织工程支架材料。  相似文献   

5.
In the present study, we have compared the effects of ultrananocrystalline diamond/amorphous carbon composite films (UNCD/a-C) and nanocrystalline diamond (NCD) containing hydrogels to support the osteogenesis of endothelial progenitor cells (EPCs). The course of EPCs osteogenic differentiation was followed 21 days and assayed by measuring cell-associated alkaline phosphatase activity, calcium deposition, and expression of fibronectin. We found that EPCs were capable to adhere to both surfaces in flattened and elongated morphology. The attachment and spreading on the UNCD/a-C films were faster as compared to the hydrogels containing NCDs (by day 7), and this was connected with the release and adsorption of fibronectin to the surfaces. During the process of EPCs differentiation, the release of fibronectin was favored by hydrogels + NCD (day 21). The formation of calcium nodules, characteristic of osteoblastic mineralization, was detected by Alizarin Red S staining. Differentiation-induced calcium nodules were detected in EPCs growing on both surfaces. The EPCs cultured on hydrogels containing NCD deposited more extracellular calcium in comparison with those on UNCD/a-C films on day 21. These results were consistent with the data about the alkaline phosphatase activity on the same day and verified that an active EPC transformation to osteoblast phenotype occurred on both substrates. Our results could have direct implications in the use of biomaterials in tissue engineering strategies, and this work might be useful for the improvement of the methodologies for substrate preparation (including scaffolds). Thus both surfaces studied could be used for modification of bone implants (bone-anchoring parts of joint prostheses or bone replacements) in order to improve their integration with the surrounding bone tissue, for which improved cell-substrate adhesion is also needed.  相似文献   

6.
Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.  相似文献   

7.
Regenerative medicine is increasingly important in clinical practice. Ligamentum flava (LF) are typically removed during spine-related surgeries. LF may be a source of cells for spinal fusion that is conducted using tissue engineering techniques. In this investigation, LF cells of rabbits were isolated and then characterized by flow cytometry, morphological observation, and immunofluorescence staining. The LF cells were also cultivated in polyethylene (glycol) diacrylate (PEGDA) hydrogels that incorporated bone morphogenetic protein-2 (BMP-2) growth factor, to evaluate their proliferation and secretion of ECM and differentiation in vitro. The experimental results thus obtained that the proliferation, ECM secretion, and differentiation of the PEGDA-BMP-2 group exceeded those of the PEGDA group during the period of cultivation. The mineralization and histological staining results differed similarly. A nude mice model was utilized to prove that LF cells on hydrogels could undergo osteogenic differentiation in vivo. These experimental results also revealed that the PEGDA-BMP-2 group had better osteogenic effects than the PEGDA group following a 12 weeks after transplantation. According to all of these experimental results, LF cells are a source of cells for spinal fusion and PEGDA-BMP-2 hydrogel is a candidate biomaterial for spinal fusion by tissue engineering.  相似文献   

8.
The use of human dental pulp stromal cells (hDPSCs) has gained increasing attention as an alternative stem cell source for bone tissue engineering. The modification of the cells’ epigenetics has been found to play an important role in regulating differentiation, with the inhibition of histone deacetylases 3 (HDAC3) being linked to increased osteogenic differentiation. This study aimed to induce epigenetic reprogramming using the HDAC2 and 3 selective inhibitor, MI192 to promote hDPSCs osteogenic capacity for bone regeneration. MI192 treatment caused a time–dose-dependent change in hDPSC morphology and reduction in viability. Additionally, MI192 successfully augmented hDPSC epigenetic functionality, which resulted in increased histone acetylation and cell cycle arrest at the G2/M phase. MI192 pre-treatment exhibited a dose-dependent effect on hDPSCs alkaline phosphatase activity. Quantitative PCR and In-Cell Western further demonstrated that MI192 pre-treatment significantly upregulated hDPSCs osteoblast-related gene and protein expression (alkaline phosphatase, bone morphogenic protein 2, type I collagen and osteocalcin) during osteogenic differentiation. Importantly, MI192 pre-treatment significantly increased hDPSCs extracellular matrix collagen production and mineralisation. As such, for the first time, our findings show that epigenetic reprogramming with the HDAC2 and 3 selective inhibitor MI192 accelerates the osteogenic differentiation of hDPSCs, demonstrating the considerable utility of this MSCs engineering approach for bone augmentation strategies.  相似文献   

9.
Edentulism is the condition of having lost natural teeth, and has serious social, psychological, and emotional consequences. The need for implant services in edentulous patients has dramatically increased during the last decades. In this study, the effects of concentrated growth factor (CGF), an autologous blood-derived biomaterial, in improving the process of osseointegration of dental implants have been evaluated. Here, permeation of dental implants with CGF has been obtained by using a Round up device. These CGF-coated dental implants retained a complex internal structure capable of releasing growth factors (VEGF, TGF-β1, and BMP-2) and matrix metalloproteinases (MMP-2 and MMP-9) over time. The CGF-permeated implants induced the osteogenic differentiation of human bone marrow stem cells (hBMSC) as confirmed by matrix mineralization and the expression of osteogenic differentiation markers. Moreover, CGF provided dental implants with a biocompatible and biologically active surface that significantly improved adhesion of endothelial cells on CGF-coated implants compared to control implants (without CGF). Finally, data obtained from surgical interventions with CGF-permeated dental implants presented better results in terms of optimal osseointegration and reduced post-surgical complications. These data, taken together, highlight new and interesting perspectives in the use of CGF in the dental implantology field to improve osseointegration and promote the healing process.  相似文献   

10.
Population aging has been a global trend for the last decades, which increases the pressure to develop new cell-based or drug-based therapies, including those that may cure bone diseases. To understand molecular processes that underlie bone development and turnover, we followed osteogenic differentiation of human dental pulp stem cells (DPSCs) using a specific induction medium. The differentiation process imitating in vivo osteogenesis is triggered by various signaling pathways and is associated with massive proteome and metabolome changes. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility-enhanced mass spectrometry. From 2667 reproducibly quantified and identified proteins, 432 were differentially abundant by strict statistic criteria. Metabolome profiling was carried out by nuclear magnetic resonance. From 27 detected metabolites, 8 were differentially accumulated. KEGG and MetaboAnalyst hinted metabolic pathways that may be involved in the osteogenic process. Enrichment analysis of differentially abundant proteins highlighted PPAR, FoxO, JAK-STAT, IL-17 signaling pathways, biosynthesis of thyroid hormones and steroids, mineral absorption, and fatty acid metabolism as processes with prominent impact on osteoinduction. In parallel, metabolomic data showed that aminoacyl-tRNA biosynthesis, as well as specific amino acids, likely promote osteodifferentiation. Targeted immunoassays validated and complemented omic results. Our data underlined the complexity of the osteogenic mechanism. Finally, we proposed promising targets for future validation in patient samples, a step toward the treatment of bone defects.  相似文献   

11.
Traditional bone defect treatments are limited by an insufficient supply of autologous bone, the immune rejection of allogeneic bone grafts, and high medical costs. To address this medical need, bone tissue engineering has emerged as a promising option. Among the existing tissue engineering materials, the use of electroactive scaffolds has become a common strategy in bone repair. However, single-function electroactive scaffolds are not sufficient for scientific research or clinical application. On the other hand, multifunctional electroactive scaffolds are often complicated and expensive to prepare. Therefore, we propose a new tissue engineering strategy that optimizes the electrical properties and biocompatibility of carbon-based materials. Here, a hydroxyapatite/carbon nanofiber (HAp/CNF) scaffold with optimal electrical activity was prepared by electrospinning HAp nanoparticle-incorporated polyvinylidene fluoride (PVDF) and then carbonizing the fibers. Biochemical assessments of the markers of osteogenesis in human adipose-derived stem cells (h-ADSCs) cultured on HAp/CNF scaffolds demonstrate that the material promoted the osteogenic differentiation of h-ADSCs in the absence of an osteogenic factor. The results of this study show that electroactive carbon materials with a fibrous structure can promote the osteogenic differentiation of h-ADSCs, providing a new strategy for the preparation and application of carbon-based materials in bone tissue engineering.  相似文献   

12.
《Ceramics International》2022,48(22):32929-32936
Calcium magnesium phosphate bone cement (MCPC) has been widely used in bone defects restoration and attracted much attention due to excellent mechanical properties and biodegradability. However, excessive MgO tends to cause a local alkaline microenvironment which is adverse for cell growth and differentiation. In this work, we constructed the MCPC composites with improved microenvironment, enhanced osteogenic differentiation and biomineralization by introducing various concentrations of gelatin solutions. Gelatin played important roles in the improvement of physicochemical property, biodegradability, biocompatibility, osteogenic differentiation activity and biomineralization of MCPC. When incorporated with 1% and 5% of gelatin, the MCPC composites exhibited higher compressive strength and osteogenic differentiation ability of BMSCs in vitro. In conclusion, the modified MCPC composite is a potential candidate for bone defects repair and regenerate.  相似文献   

13.
Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.  相似文献   

14.
15.
The osteogenic differentiation of mesenchymal stem cells is now a standard procedure in modern bone tissue engineering. As this is a promising field for future clinical applications, many cell culture media exist to promote osteogenic differentiation. Prior to differentiation, cells must be expanded to obtain sufficient numbers for experiments. Little evidence is available regarding the optimal media combination for expansion and differentiation to maximize the osteogenic response. Therefore, human BM-MSCs (n = 6) were expanded in parallel in DMEM (Dulbecco’s Modified Eagle Medium) LG (Low Glucose) and α-MEM (Minimum Essential Media alpha-modification), followed by simultaneous monolayer differentiation toward the osteogenic lineage in: 1. DMEM LG (Low Glucose), 2. DMEM HG (High Glucose), 3. α-MEM, 4. “Bernese medium”, and 5. “Verfaillie medium”, with a corresponding negative control (total 20 groups). As a marker for osteogenic differentiation, hydroxyapatite was accessed using radioactive 99mTc-HDP labeling and quantitative alizarin red staining. The results indicate that all media except “Bernese medium” are suitable for osteogenic differentiation, while there was evidence that DMEM LG is partly superior when used for expansion and differentiation of BM-hMSCs. Using “Verfaillie medium” after DMEM LG expansion led to the highest grade of osteogenic differentiation. Nevertheless, the difference was not significant. Therefore, we recommend using DMEM LG for robust osteogenic differentiation, as it is highly suitable for that purpose, economical compared to other media, and requires little preparation time.  相似文献   

16.
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.  相似文献   

17.
Polyvinyl alcohol (PVAl) hydrogel, alone and reinforced with two types of carbon nanoparticles, was studied in cultured cells to assess its potential use in treating osteochondral defects. The carbon nanoparticles were produced by hot-filament chemical vapour deposition. The carbon material was characterised with a Renishaw Invia Raman microscope system and the morphological particles were characterised with field emission scanning electron microscopy and high-resolution transmission electron microscopy. Cytotoxicity was evaluated by measuring the Vero fibroblast-type cells’ metabolic activity and studying their morphology. The osteogenic differentiation of mesenchymal stem cells obtained from rat bone marrow was evaluated by alkaline phosphatase (ALP) and alizarin red S (ARS) staining. Cell viability and morphology were assessed with thiazolyl blue tetrazolium bromide and scanning electron microscopy, respectively. The materials did not interfere with the viability, metabolic activity, morphology and spreading of either of the cell types analysed. Nodules of mineralised organic matrix were identified with ARS and ALP, confirming osteogenic differentiation. These results indicated higher concentration of ALP and mineralised matrix for PVAl with carbon nanoparticles. The results of this study indicate the potential use of carbon nanoparticles with PVAl hydrogels as orthopaedic biomaterials to treat osteochondral defects, but further in vivo investigations are still necessary.  相似文献   

18.
Fusion cages composed of titanium and its alloys are emerging as valuable alternative to standard polyetheretherketone (PEEK) ones routinely used in cervical and lumbar spine surgery. Aim of this study was to evaluate osteo-inductive and osteo-conductive ability of an innovative trabecular titanium (T-Ti) scaffold on human mesenchymal stem cells (hMSCs), in both absence and presence of biochemical osteogenic stimuli. Same abilities were assessed on PEEK and standard 2D plastic surface, the latter meant as gold-standard for in vitro differentiation studies. hMSCs adhered and colonized both T-Ti and PEEK scaffolds. In absence of osteogenic factors, T-Ti triggered osteogenic induction of MSCs, as demonstrated by alkaline phosphatase activity and calcium deposition increments, while PEEK and standard 2D did not. Addition of osteogenic stimuli reinforced osteogenic differentiation of hMSCs cultured on T-Ti in a significantly higher manner with respect to standard 2D plastic culture surfaces, whereas PEEK almost completely abolished the process. T-Ti driven differentiation towards osteoblasts was confirmed by gene and marker expression analyses, even in absence of osteogenic stimuli. These results clearly indicate superior in vitro osteo-inductive and osteo-conductive capacity of T-Ti compared to PEEK, and make ground for further studies supporting the use of T-Ti cages to improve bone fusion.  相似文献   

19.
Deer bone in traditional Chinese medicine is valued for its unique biomimetic bone matrix components. Icariin (Ica), which is claimed by Chinese medicine as a bone-repairing agent, is also widely accepted. In this report, a novel Ica-encapsulated PLGA/nano deer bone meal (Ica@PLGA/nBM) biomimetic microsphere was fabricated. The Ica could be released from microspheres in a controlled manner. In vitro results showed that the microsphere had good biocompatibility due to the addition of nBM and the MC3T3-E1 cells could adhere to and grow well on the microspheres. Moreover, Ica and nBM in microspheres could synergically promote the ALP activity of MC3T3-E1 cells significantly (p < 0.05), which indicated the acceleration of osteogenic differentiation. The RT-PCR results showed that the expression levels of bone matrix proteins (Col1 & OPN) were enhanced by the composite (p < 0.05). In addition, Ica and nBM in microspheres also obviously promoted the expression of RUNX2 and BMP-2, respectively (p < 0.05). The in vivo results demonstrated the effective promotion of Ica@PLGA/nBM on complete bony connection to cover the defect site and the bone defect repair. And the Ica(M)@PLGA/nBM microspheres provided the best repair results. All the results confirmed that the Ica@PLGA/nBM composite biomimetic microsphere has the potential for clinical application.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号