首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

There is an entanglement over the rapid exhaust of fossil fuel and soreness of environmental changes. Biofuels are acting as an alternative resource for petroleum products and also salve of emissions control and engine performance improvement. Scholars have seen the supreme use of bio-fuel apparent, as it will influence greenhouse effect. Investigation results show the diminished heating value in congruence with conventional pabulum, so it had depleted more in brake mean effective-fuel power ratio and proliferated NOx compared with diesel fuel. The article mainly focuses on the selection – process of biofuel and analysis of performance (BSFC, EGT and brake thermal efficiency), emissions (CO, NOx, CO2, PM and HC) and combustion (NHR and CP) of the engine are exclusively discussed and summarised. Finally, stability, opportunity, and restraint of a selection of alternative fuel and investigation and study on the engine were asserted to guide further future exploration and evolution in that domain.  相似文献   

2.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

3.
Diesel engines have been the ‘primus motor’ of transportation in the world since a long time now. However, the depletion of fuel supplies, recent concerns over the environment and the ever-increasing fuel prices have made the search for an alternative fuel of paramount importance. A considerable amount of interest has been shown by researchers to evaluate different plant and vegetable oils as a replacement of diesel. Based on this background, an attempt to investigate Thyme oil as a substitute to diesel without any modifications in the engine was made. The experiment was conducted on a 1500?rpm, four-stroke, diesel engine with single cylinder which is water cooled. Cerium Oxide nano additive was added to the blends of thyme oil with diesel and its effects on the brake thermal efficiency, specific fuel consumption (SFC) and exhaust emissions were examined. The experimental results portrayed better values of brake thermal efficiency and low SFC with B10 (10 parts of oil with 90 parts of diesel) and B20 samples of the blends, while the B40 blend showed lower NOx emissions at all loads. The HC content was found to increase with the increasing quantity of thyme oil in the blends.  相似文献   

4.
Fuel crisis and environmental concerns have led researchers to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests and oil-bearing biomass materials. Vegetable oils have energy content comparable to that of diesel fuel. Straight vegetable oils posed several operational problems and durability problems when subjected to long-term usage in compression ignition engine. These problems are attributed to higher viscosity and lower volatility. In this study, performance and emission parameters of a diesel engine operating on neem oil and its blends of 5, 10, 15 and 20?vol% with ethanol, 1-propanol, 1-butanol and 1-pentanol are evaluated and compared with diesel operation. The results indicate that the brake thermal efficiency is improved with the use of neem oil–alcohol blends with respect to those of neat neem oil. The smoke intensity, CO and HC emissions with neem oil–alcohol blends are observed to be lower with respect to those of neat neem oil at higher loads. The NO x emission is very slightly reduced with the use of neem oil–alcohol blends except for the neem oil–ethanol blend compared with that of neat neem oil.  相似文献   

5.
ABSTRACT

Biodiesel as an alternative source of petroleum fuel could reduce the dependence on petroleum products and control pollution problems. These biofuels are derived from various sources and if directly used in the engine it will not completely burn and will cause an increase in the emission level. In this experiment, 20% of rubber seed oil (B20) blended with pure diesel fuel along with aluminium oxide (Al2O3) was used in the proportions of 10?, 20 and 30?ppm. The obtained experimental results showed that the brake thermal efficiency was increased and the engine emission was reduced. And the brake-specific fuel consumption was reduced, but the NOx level increased at the proportion level at 10?ppm of nano additives. This experiment has been carried out in a single cylinder water-cooled engine connected to an electrical dynamometer without engine modification and the injection pressure and timings were maintained at the standard level designed for the engine. The dynamic energy of aluminium oxide blend with the biodiesel improved the combustion characteristics in the engine, and caused a reduction in carbon deposits by 44.8% in the cylinder wall.  相似文献   

6.
In day today's applications, it is obligatory to devise the usage of diesel in an economic and environmentally benign way. The present work was aimed at studying the performance, emission and combustion characteristics of a four-stroke diesel engine by adding n-pentane at different proportions such as 2%, 4%, 6%, 8% and 10% by volume with diesel. The performance, combustion and emission characteristics obtained from the experiment revealed that the addition of n-pentane augments the brake thermal efficiency of the engine. At full load, the brake thermal efficiency increased by 3.17% for an addition of 6% n-pentane, 4.31% for an addition of 8% n-pentane and 6.36% for an addition of 10% n-pentane. From the emission test, it was concluded that at full load, the NOx emission decreased by 8.67% for an addition of 6% n-pentane, 17.43% for an addition of 8% n-pentane and 18.09% for an addition of 10% n-pentane.  相似文献   

7.
In this study, hydrocarbon fuel (HCF) was derived from waste transformer oil through a traditional base-catalysed trans-esterification process. The experimental investigations using its blends of 25%, 50%, 75%, 100% and diesel fuel were carried out separately. The HCF obtained from waste transformer oil is used in a direct injection (DI) diesel engine without any engine modification to evaluate its performance, emission and combustion characteristics. The results indicate that the engine operating on test fuel blends shows a marginal increase in brake thermal efficiency (BTE) with a significant reduction in smoke. Nitrous oxides (NOx) emission was slightly higher for test fuel blends than for diesel. The results show that at maximum load conditions, 25% HCF reduces carbon monoxide, smoke and hydrocarbon emission by 50%, 31% and 10%, respectively, whereas 50% HCF shows a greater BTE than other blends and is 12% higher than that of the diesel fuel. The combustion characteristics of fuel blends closely followed those of standard diesel.  相似文献   

8.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

9.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

10.
ABSTRACT

In order to improve its performance and emission parameters, higher alcohols are mixed to neat diesel. Higher alcohol (Pentanol) has the capacity for oxygen enrichment during combustion process which put into the catalytic reaction and gets better the combustion process. Pentanol is blended with neat diesel at different measured volumes of 15%, 25% and 35%. Three blended fuels prepared by volume of 85% of diesel and 15% of pentanol (D85P15), 75% of diesel and 25% of Pentanol (D75P25) and 65% of diesel and 35% of Pentanol (D65P35) respectively. Effect of emission and performance parameters have been studied in an unmodified diesel engine propelled with pentanol-diesel blends at various proportions. Pentanol acts as a catalyst (oxidising) and it was helpful in reducing carbon monoxide and hydrocarbon emissions. It is found that a considerable reduction in NOx emission and it also reduces fuel consumption which increases in brake thermal efficiency.  相似文献   

11.
This paper aims to study the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca oil methyl ester, palm oil methyl ester, sesame methyl ester oil, rapeseed methyl ester oil, soybean oil methyl ester and diesel fuel. In this present work, only 20% of each biodiesel blends was tested in diesel engine; stated that the possible use of biodiesel of up to 20% in a diesel engine without modification in literature. A single-cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine was used to evaluate their performance at constant speed and at measured load conditions. The performance and combustion tests are conducted using each of the above test fuels, at a constant speed of 5000?rpm. Thus, the varying physical and chemical properties of test fuels against pure diesel are optimised for better engine performance.

Abbreviations: BP: brake power; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CP: cylinder pressure; DP: diesel pressure; EGT: exhaust gas temperature; HC: hydrocarbon; HRR: heat release rate; NO x : nitric oxides; PM: particulate matter; TDC: top dead centre; VCR: variable compression ratio  相似文献   


12.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil.The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NOx and NO2 emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase.The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.  相似文献   

13.
ABSTRACT

Large amount of emissions from vehicles have led to the degradation of urban air quality and have resulted in serious health issues. Biodiesel, a substitute fuel for diesel engine, is receiving great attention worldwide. This work investigates the merits of using neem-biodiesel and diesel blends for single cylinder small direct injection diesel engine. The energy (the first law) and exergy (the second law) analyses of direct injection diesel engine using neem-biodiesel blends have been presented. Taguchi’s ‘L’ 16’ orthogonal array has been used for the design of experiments. The engine was tested at different engine speeds, load percentages and blend ratios, using neem biodiesel. The results show that the optimum operating conditions for minimum brake specific fuel consumption are achieved when the engine speed is 1900?rev/min, load percentage is 75 and the engine is fuelled with B40.  相似文献   

14.
ABSTRACT

In recent years, biodiesel has become more attractive as an alternative fuel for diesel engines because of its environmental benefits and the fact is that it is made from renewable resources. The role of biodiesel is not to replace petroleum diesel, biofuels help to improve the economical growth and positive impacts on the environment. The main purpose of this research is to reduce the emission such as carbon monoxide (CO), nitrogen oxides (NOX), hydrocarbons (HC) and carbon dioxide (CO2). And to increase the performance characteristics such as break thermal efficiency (BTE), specific fuel consumption (SFC) of diesel engines. Here we used dual biofuel (lemongrass oil plus mint oil) blended with diesel and cerium oxide is added as an additive and undergone the test of engine performance and emission parameters of diesel. The measuring parameters are BTHE, specific fuel conception, CO2, CO, NOx and HC.  相似文献   

15.
Biodiesel is considered to be an alternative energy source, which will help to decrease the effects of global greenhouse gases. The extensive use of fossil fuels has led to the depletion of petroleum resources. The gases that emerge out from the diesel engine cause a major impact on the ecological system. In this paper, black pepper oil along with nano-additives was blended with a diesel engine and its performance was analysed in direct injection diesel engine at a constant speed and at different loading conditions. At varying loading conditions, the brake thermal efficiency of biodiesel blends was found to be slightly higher than that of diesel. It is also seen that the unburnt hydrocarbons and carbon monoxide get reduced at different loads and at different blends. It was observed from the result that by using biodiesel emission of CO and HC and smoke decreased while NOx emission increased.  相似文献   

16.
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads.The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO2) emissions, but decrease in nitrogen oxides (NOx), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO2, particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NOx, particulate mass and particulate number concentrations at medium to high engine loads.  相似文献   

17.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

18.
ABSTRACT

The improvement in engine performance and exhaust emissions reduction are the major important issues in developing a more efficient engine. The injection timing is one the major parameters that affect the engine performance and emissions for a diesel engine. The present work focused on characterising the in?uence of injection timing on engine performance and exhaust emissions. This has been critically investigated for B20?+?25?ppm (20% Mimusops Elangi methyl ester-80% diesel fuel?+?25?ppm of TiO2 nanoparticle) additive as alternative fuel. The B20?+25 ppm TiO2 nanoparticle additive produces more HC and CO emission, but reduce NOX emission when injection timing is retarded. Advancement in injection timing for B20?+25?ppm TiO2 nanoparticle additive results in an increase of brake thermal efficiency, decreases brake specific fuel consumption and giving out less HC, CO, smoke emissions but the marginal increase in the NOX emission.  相似文献   

19.
The present research work focuses on the influence of exhaust gas recirculation (EGR) on the characteristics of the diesel engine operated with 20% tamarind seed methyl ester (TSME 20) as the renewable fuel. The use of TSME 20 as biodiesel results in closer performance characteristics with diesel fuel. However, TSME 20 biodiesel blend generated higher oxides of nitrogen (NOX) emissions at all operating conditions. Firstly, tests are performed using diesel and TSME 20 biodiesel blend at constant speed under different loads. Thereafter, experiments are conducted on TSME 20 with EGR rates at different concentrations. The test results revealed that with TSME 20 with 20% EGR rate, NOX emissions are reduced by 45.67% and 52.69% when compared to diesel and TSME 20. However, there is a slight reduction in brake thermal efficiency. Hence, the use of 20% EGR rate to TSME 20 is an optimum approach for better control of NOX emissions.

Abbreviations BDC: bottom dead centre; BMEP: brake mean effective pressure; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CO2: carbon dioxide; EGR: exhaust gas recirculation; FSN: filter smoke number; HC: hydrocarbon; kWh: kilo Watt hour; NOX: oxides of nitrogen; ppm: parts per million; SO: smoke opacity; TDC: top dead centre; TSME: tamarind seed methyl ester; TSME 20: 20% tamarind seed methyl ester; TSME 20–20%: tamarind seed methyl ester with 80% diesel; TSME 10% EGR: TSME 20 with 10% exhaust gas recirculation; TSME 20% EGR: TSME 20 with 20% exhaust gas recirculation; TSME 30% EGR: TSME 20 with 30% exhaust gas recirculation  相似文献   

20.
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NOx emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NOx emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NOx emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NOx emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号