共查询到20条相似文献,搜索用时 281 毫秒
1.
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,实验结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。 相似文献
2.
针对区块链平台上智能合约应用种类繁多,人工筛选合适的智能合约应用服务日益困难的问题,提出一种基于层级注意力机制与双向长短期记忆(Bi-LSTM)神经网络的智能合约自动分类模型——HANN-SCA。首先,利用Bi-LSTM网络从智能合约源代码和账户信息两个角度同时建模,最大限度地提取智能合约的特征信息。其中源代码角度关注智能合约中的代码语义特征,账户信息角度关注智能合约的账户特征。然后,在特征学习过程中从词层面和句层面分别引入注意力机制,重点捕获对智能合约分类有重要意义的单词和句子。最后,拼接代码特征与账户特征以生成智能合约文档级特征表示,通过Softmax层完成分类任务。实验结果表明,所提模型在Dataset-E、Dataset-N和Dataset-EO数据集上的分类正确率分别达到了93.1%、91.7%和92.1%,效果明显优于传统的支持向量机模型(SVM)和其他神经网络基准模型,且具有更好的稳定性与更高的收敛速度。 相似文献
3.
Morton J. Canty 《Computers & Geosciences》2009,35(6):1280-1295
It is demonstrated that the use of an ensemble of neural networks for routine land cover classification of multispectral satellite data can lead to a significant improvement in classification accuracy. Specifically, the AdaBoost.M1 algorithm is applied to a sequence of three-layer, feed-forward neural networks. In order to overcome the drawback of long training time for each network in the ensemble, the networks are trained with an efficient Kalman filter algorithm. On the basis of statistical hypothesis tests, classification performance on multispectral imagery is compared with that of maximum likelihood and support vector machine classifiers. Good generalization accuracies are obtained with computation times of the order of 1 h or less. The algorithms involved are described in detail and a software implementation in the ENVI/IDL image analysis environment is provided. 相似文献
4.
针对传统方法对多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM)神经网络的预测方法。首先,提出了实现预测目标的核心方法,并分析了方法的内在优势;其次,构建了基于树结构长短期记忆神经网络的预测模型;最后,基于最近十年的国际黄金现货交易数据对模型进行了验证。实验结果表明,所提算法预测准确率高出最小成功率近10个百分点,证实了所提方法的有效性。 相似文献
5.
6.
R. A. Aliev B. Fazlollahi R. R. Aliev B. Guirimov 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(2):183-190
It is known that one of the most spread forecasting methods is the time series analysis. A weakness of traditional crisp time
series forecasting methods is that they process only measurement based numerical information and cannot deal with the perception-based
historical data represented by linguistic values. Application of a new class of time series, a fuzzy time series whose values
are linguistic values, can overcome the mentioned weakness of traditional forecasting methods. In this paper we propose a
fuzzy recurrent neural network (FRNN) based time series forecasting method for solving forecasting problems in which the data
can be presented as perceptions and described by fuzzy numbers. The FRNN allows effectively handle fuzzy time series to apply
human expertise throughout the forecasting procedure and demonstrates more adequate forecasting results. Recurrent links in
FRNN also allow for simplification of the overall network structure (size) and forecasting procedure. Genetic algorithm-based
procedure is used for training the FRNN. The effectiveness of the proposed fuzzy time series forecasting method is tested
on the benchmark examples. 相似文献
7.
针对视频帧预测中难以准确预测空间结构信息细节的问题,通过对卷积长短时记忆(LSTM)神经网络的改进,提出了一种深度卷积长短时神经网络的方法。首先,将输入序列图像输入到两个不同通道的深度卷积LSTM网络组成的编码网络中,由编码网络学习输入序列图像的位置信息变化特征和空间结构信息变化特征;然后,将学习到的变化特征输入到与编码网络通道数对应的解码网络中,由解码网络输出预测的下一张图;最后,将这张图输入回解码网络中,预测接下来的一张图,循环预先设定的次后输出全部的预测图。与卷积LSTM神经网络相比,在Moving-MNIST数据集上的实验中,相同训练步数下所提方法不仅保留了位置信息预测准确的特点,而且空间结构信息细节表征能力更强。同时,将卷积门控循环单元(GRU)神经网络的卷积层加深后,该方法在空间结构信息细节表征上也取得了提升,检验了该方法思想的通用性。 相似文献
8.
M. Akbari A. r. Mamanpoush A. Gieske M. Miranzadeh M. Torabi H. R. Salemi 《International journal of remote sensing》2013,34(19):4117-4135
Remote sensing provides one way of obtaining more accurate information on total cropped area and crop types in irrigated areas. The technique is particularly well suited to arid and semi‐arid areas where almost all vegetative growth is associated with irrigation. In order to obtain more information with regard to crop patterns in the irrigated areas in the Zayandeh Rud basin, a classification analysis was made of the Landsat 7 image of 2 July 2000. The target of the classification was to primarily focus on the agricultural land use. The date of the image fell in the transition period where the first crops were harvested and many fields were being prepared for the second crop. The image has therefore captured an instantaneous picture of a system generally in transition from the first to the second crop, but with significant differences from system to system, both with respect to crop types and agricultural cycles. The overall accuracy of image registration was about 30 m (one pixel). Fieldwork was conducted on various occasions in August–October 2000 and May–October 2001. Farmers were interviewed to determine the situation on 2 July 2000. Fields were mapped in detail with the GPS instruments, and data compiled for 112 fields. Using a supervised classification system, training areas were selected and initial classifications were made to determine the validity of the classes. After merging several classes and testing several new classes a final classification system was made. All seven Landsat bands were used in the determination of the feature statistics. The final classification was made with the minimum distance algorithm. The statistics with respect to areas and crop type for the districts was obtained by crossing the raster map with the irrigation district raster map. The results with respect to crop type and total irrigated area per district were compared with those of previous studies. This included both NOAA/AVHRR and conventional agricultural district statistics. 相似文献
9.
Driver drowsiness detection using hybrid convolutional neural network and long short-term memory 总被引:1,自引:0,他引:1
Multimedia Tools and Applications - Drowsiness and fatigue of the drivers are amongst the significant causes of the car accidents. Every year the number of deaths and fatalities are tremendously... 相似文献
10.
11.
针对搜狐coreEntityEmotion_train语料核心实体识别和核心实体情感分析的任务,提出了基于注意力机制的长短期记忆神经网络结合条件随机场模型(AttBi-LSTM-CRF)。首先,对文本进行预训练,将每个字映射为维度相同的低维向量;然后,把这些向量输入到基于注意力机制的长短期记忆神经网络(AttBi-LSTM)中,以获取长远的上下文信息并集中注意力到与输出标签高度相关的信息上;最后,通过条件随机场(CRF)层获取整个序列的最优标签。将AttBi-LSTM-CRF模型与双向长短记忆神经网络(Bi-LSTM)、AttBi-LSTM和双向长短期记忆神经网络结合条件随机场(Bi-LSTM-CRF)模型进行对比实验。实验结果表明,AttBi-LSTM-CRF模型的准确率达到0.786,召回率达到0.756,F1值达到0.771,优于对比模型,验证了AttBi-LSTM-CRF性能的优越性。 相似文献
12.
政府采购平台上的电商大数据,由于商品种类繁多且书写格式无统一规范,采用传统模型在大数据中标定出同一种商品时准确率低、速度慢、样本利用率低、泛化能力不足.提出一种基于长短时记忆网络(LSTM)的同一性标定模型,该模型由分词、重要性排序和相似度计算3个子模型串联组成.分词子模型对电商大数据进行预处理,获得有区分度的关键词序列;LSTM重要性排序子模型筛选最能表征商品信息的重要关键词序列;LS T M相似度计算子模型在给定大数据中准确标定出同一种商品.另外还引入二分查找、GloVe词向量化和词序列语义校验技术,分别用于提高标定速度、训练样本利用率与标定泛化能力.实验结果表明,在处理不同品类的电商大数据时,所提模型对易混淆样本的同一性标定准确率高. 相似文献
13.
针对传统手足口病(HFMD)发病趋势预测算法预测精度不高、未结合其他影响因素、预测时间较短等问题,提出结合气象因素使用长短时记忆(LSTM)网络进行长期预测的方法。首先,将发病序列通过滑动窗口的方式转化为网络的输入和输出;然后采用LSTM网络进行数据建模和预测,并使用迭代预测的方式获得较长期的预测结果;最后在网络中增加温度和湿度变量,比较这些变量对预测结果的影响。实验结果表明,加入气象因素能够提高模型的预测精度,所提模型在济南市数据集上的平均绝对误差(MAE)为74.9,在广州市数据集上的MAE为427.7,相较于常用的季节性差分自回归移动平均(SARIMA)模型和支持向量回归(SVR)模型,该模型的预测准确率更高。可见所提模型是HFMD发病趋势预测的一种有效的实验方法。 相似文献
14.
针对传统基于形态特征的心电检测算法存在特征提取不准确和高复杂性等问题,提出了一种多层的长短时记忆(LSTM)神经网络结构。结合传统LSTM模型在时序数据处理上的优势,该模型增加了反向和深度计算,避免了人工提取波形特征,提高了网络的学习能力。通过给定心拍序列和分类标签进行监督学习,然后实现对未知心拍的心律失常检测。通过对MIT-BIH数据库中的心律失常数据集进行实验验证,模型的总体准确率为98.34%。相比支持向量机(SVM),该模型的准确率和F1值均有提高。 相似文献
15.
David L. Toll 《Remote sensing of environment》1985,17(2):129-140
Selected sensor parameter differences between TM and MSS were assessed through classification performance of a suburban/regional test site. Overall classification accuracy of a seven-band Landsat TM scene in comparison to MSS yielded an improvement in accuracy from 74.8% to 83.2%. To study the possible causes for the difference in classification performance, key sensor parameter differences between MSS and TM, including 1) spatial resolution (30 m for TM versus 80 m for MSS), 2) quantization level (256 levels for TM versus 64 for MSS), and 3) spectral regions (seven bands in four major spectral regions for TM versus four bands in two regions for MSS), were evaluated. Landsat TM data were processed to simulate all possible combinations of these MSS and TM parameters, yielding a three-factor design with two levels per factor. The results indicated that the added spectral regions (TM 1, TM 5, and TM 7) and to a lesser degree the increase in quantization level to eight bits produced the improved TM classification accuracy. However, in this study, the higher 30 m spatial resolution of TM contributed to a reduced classification accuracy from increased within-field variability or class heterogeneity. 相似文献
16.
现代工业过程建模中,生产过程的多变量、非线性及动态性会导致模型复杂度增高且建模精度降低.针对这一问题,将非负绞杀算法(NNG)嵌入长短期记忆(LSTM)神经网络,提出一种基于LSTM神经网络及其输入变量选择的动态软测量算法.首先,通过参数优化生成训练好的LSTM神经网络,利用其出色的历史信息记忆能力处理工业过程中的动态、时滞等问题;其次,采用NNG算法对LSTM网络输入权重进行压缩,剔除冗余变量,提高模型精度,并采用网格搜索法与分块交叉验证对其超参数寻优;最后,将算法应用于某火电厂脱硫过程排放烟气SO2浓度软测量建模,并与其它先进算法进行性能比较.实验结果表明所提算法能有效剔除冗余变量,降低模型复杂度并提高其预测性能. 相似文献
17.
提出一种新的基于非下采样Contourlet变换(NSCT)和最小二乘支持向量机(LSSVM)的遥感图像土地覆盖分类方法。该方法动态选择最优的多光谱图像的波段特征进行组合,基于NSCT和IHS对多光谱图像和全色图像进行融合,增强多光谱图像的空间分辨率,基于LSSVM对融合图像进行分类。实验结果表明,提出的方法在保留多光谱图像光谱信息的同时,增强了图像的空间细节表现能力,提供更加可靠的地物分类特征,提高了分类精度,并且优于传统的基于最小距离法、最大似然法、贝叶斯分类法和BPNN分类法的遥感图像分类方法,该方法是有效可行的。 相似文献
18.
Neural Computing and Applications - Fuzzy neural networks (FNNs) have attracted considerable interest for modeling nonlinear dynamic systems in recent years. However, the recurrent design and the... 相似文献
19.
The Journal of Supercomputing - In recent years, deep artificial neural networks can have better forecasting performance than many other artificial neural networks. The long short-term memory... 相似文献
20.
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNN-LSTM模型.1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC.首先,通过一层一维卷积... 相似文献