首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
以遥感图像为研究对象论述了一种基于特征点的图像匹配算法在遥感图像匹配与拼接中的应用及改进。在提取图像特征点上,尺度不变特征转换SIFT算法能够对缩放、旋转、仿射的图像保持尺度不变特性。对于提取出的SIFT特征点,采用改进的随机抽样一致性RANSAC方法进行提纯,剔除多余的特征点,缩短匹配时间。实验证明,该算法有效提高了遥感图像匹配的效率和准确性。  相似文献   

2.
针对遥感图像空间分辨率和光谱分辨率不可兼得的情况,结合多尺度变换与稀疏表示,提出一种shearlet稀疏基与引导滤波共同作用的遥感图像融合算法。以IHS融合模型为基础,利用引导滤波作拟合处理,再用shearlet变换分解亮度图像和全色图像,得到图像的高低频子带系数。对低频子图进行稀疏化处理并获取最优稀疏系数,稀疏系数以图像块活跃度取大的标准进行替换融合。基于区域能量和区域方差融合处理对应的高频子图,再利用shearlet反变换获取融合结果。实验结果表明,本文算法能提高图像清晰度以及光谱保留度,在图像完整度和细节考量上远好于其他算法。  相似文献   

3.
针对遥感图像空间分辨率和光谱分辨率不可兼得的情况, 结合多尺度变换与稀疏表示,提出一种shearlet稀疏基与引导滤波共同作用的遥感图像融合算法。以IHS融合模型为基础,利用引导滤波作拟合处理,再用shearlet变换分解亮度图像和全色图像,得到图像的高低频子带系数。 对低频子图进行稀疏化处理并获取最优稀疏系数,稀疏系数以图像块活跃度取大的标准进行替换融合。 基于区域能量和区域方差融合处理对应的高频子图,再利用shearlet反变换获取融合结果。 实验结果表明,本文算法能提高图像清晰度以及光谱保留度,在图像完整度和细节考量上远好于其他算法。  相似文献   

4.
图像配准是遥感图像处理中的基本问题.本文针对多源多时相遥感影像的特点,提出了一种基于自适应尺度的渐进配准方法,在从粗到细的迭代配准过程中,可以通过上一次配准结果的几何定位误差来确定本次匹配的尺度,并按该尺度提取特征角点和特征邻域进行匹配,与常规金字塔渐进配准方法相比,减少了匹配次数,提高了配准效率.另外,特征提取和匹配过程中提出一种基于Harris-Laplace算法和相位相关算法的遥感影像配准算法,利用Harris-Laplace角点代替原始图像,能够综合区域和特征的优点,对亚像元偏移、旋转、尺度变化具有不变性,同时对对比度和灰度的变化不敏感,具有很强的抗噪性.在特征检测和匹配的过程中采用限定搜索区域、抽稀角点等多种优化策略来提高算法的性能.实验证明,算法具有很好的精度,对几何攻击具有很好的鲁棒性,该算法已经应用于CBERS-02B星3级数据的批量自动化生产,具有很好的应用效果.  相似文献   

5.
基于SIFT的遥感图像配准方法   总被引:5,自引:0,他引:5  
针对多传感器遥感图像配准问题,改进了一种基于SIFT的图像自动配准方法.首先提取图像中适应尺度变化的局部不变特征点,提出了利用最近邻特征点距离与次近邻特征点距离之比的互对应约束得到初始匹配点对,然后利用RANSAC(Random Sample Concensus)算法删除误匹配特征点对.试验结果表明:该方法能够实现多传感器遥感图像和不同分辨率图像的自动配准.  相似文献   

6.
针对直接利用互信息进行图像配准存在的误差和插值假象问题,结合图像的频谱特性提出了基于频域的互信息计算方法,引入退火的思想改进了梯度上升法,利用它迭代搜索互信息最大值,使用相关长度估算最佳参数域,使得参数初始化更接近于最大值。实验结果表明,该方法对于多谱段遥感图像,较之传统方法具有明显的收敛性和稳定性。  相似文献   

7.
Image fusion is of utmost importance for many applications in image analysis. Particularly in medical imaging, images of different modalities are necessary because they provide complementary information that must be merged for an optimal use. The fusion of these images, which can be achieved through a registration process, makes it possible to superimpose all available information on the same frame. In many cases, a rigid transformation is sufficient to align correctly the images. However, there are cases where a non-rigid transformation is needed: geometrical distortions present in one image, non-rigid motion, etc. The purpose of this paper is to propose a generic method to account for these deformations in case of multimodal images. We have applied the algorithm in the particular context of 3D medical images and present results on simulated and real data.  相似文献   

8.
For remote sensing image registration, we find that affine transformation is suitable to describe the mapping between images. Based on the scale-invariant feature transform (SIFT), affine-SIFT (ASIFT) is capable of detecting and matching scale- and affine-invariant features. Unlike the blob feature detected in SIFT and ASIFT, a scale-invariant edge-based matching operator is employed in our new method. To find the local features, we first extract edges with a multi-scale edge detector, then the distinctive features (we call these ‘feature from edge’ or FFE) with computed scale are detected, and finally a new matching scheme is introduced for image registration. The algorithm incorporates principal component analysis (PCA) to ease the computational burden, and its affine invariance is embedded by discrete sampling as ASIFT. We present our analysis based on multi-sensor, multi-temporal, and different viewpoint images. The operator shows the potential to become a robust alternative for point-feature-based registration of remote-sensing images as subpixel registration consistency is achieved. We also show that using the proposed edge-based scale- and affine-invariant algorithm (EBSA) results in a significant speedup and fewer false matching pairs compared to the original ASIFT operator.  相似文献   

9.
同一卫星的全色与多光谱图像由于拍摄时间不同、传感器视角有差异等原因,存在复杂的非刚性变形.针对上述问题,提出一种基于特征约束与光流场方法的配准方法.光流场方法是基于物理模型的配准方法,可以处理复杂的非刚性变形;特征约束可以提高配准精度;采用网格分割的方法分配特征点的光流场,可以提高配准的鲁棒性.以资源三号卫星图像为实验数据,实验结果表明,该方法能够取得较高精度和较好鲁棒性.  相似文献   

10.
With the increasing number of high-resolution remote sensing (HRRS) image technologies, there is an interest in seeking a way to retrieve images efficiently. In order to describe the images with abundant texture information more concisely and accurately, we propose a novel remote sensing image retrieval approach based on the statistical features of non-subsampled shearlet transform (NSST) coefficients, according to which we set up a model using Bessel K form (BKF). First, the remote sensing (RS) image is decomposed into several subbands of frequency and orientation using the non-subsampled shearlet transform. Then, we use the Bessel K distribution model is utilized to describe the coefficients of NSST high-frequency subband. Next, the BKF parameters are selected to serve as the texture feature to represent the characteristics of image, namely BKF statistical model feature (BSMF), and the feature vector of each image is created by combination with parameters at each high-pass subband. Both the experiment and theory indicate that the BKF distribution is highly matched with the statistical features of NSST coefficients within high-pass subbands. In our experiments, we applied the proposed method to two general RS image datasets- The UC Merced land use dataset and the Sydney dataset. The results show that our proposed method can achieve a more robust and commendable performance than the state-of-the-art approaches.  相似文献   

11.
This paper proposes a novel multimodal biometric images hiding approach based on correlation analysis, which is used to protect the security and integrity of transmitted multimodal biometric images for network-based identification. Compared with existing methods, the correlation between the biometric images and the cover image is first analyzed by partial least squares (PLS) and particle swarm optimization (PSO), aiming to make use of the abundant information of cover image to represent the biometric images. Representing the biometric images using the corresponding content of cover image results in the generation of the residual images with much less energy. Then, considering the human visual system (HVS) model, the residual images as the secret images are embedded into the cover image using middle-significant-bit (MSB) method. Extensive experimental results demonstrate that the proposed approach not only provides good imperceptibility but also resists some common attacks and assures the effectiveness of network-based multimodal biometrics identification.  相似文献   

12.
目的 遥感卫星幅宽较大,成像区域内的薄云和雾很难区分,云雾降低了遥感影像的解译精度和对目标地物判别的准确性。传统的云雾去除方法是通过调整图像的对比度和饱和度来提高重建图像的质量,对不均匀分布云雾的适应性不强。为此,本文以"高分二号"(GF-2)遥感数据为例,提出一种结合高斯曲率滤波的雾度图(haze thickness map,HTM)求解算法。方法 采用遥感影像的红波段进行HTM求解,首先通过不重叠的滑动窗口对整幅图像取暗像素,得到HTM估计值,利用高斯曲率滤波对其进行平滑,减少噪声干扰,保持地物边缘特征,并通过插值运算恢复到原图尺寸;然后利用改进的2维最大熵自动确定分割阈值,提取HTM中白色区域并抑制,对边缘处的像素值进行校正;最后通过HTM结果恢复出清晰影像。结果 由目视判读结合评价指标进行评价,将改进的暗原色先验法、传统的HTM算法与本文改进的方法在不同地区含云雾的遥感影像上进行对比实验。本文改进方法所得结果与传统方法相比,灰度均值降低约34.96%,平均梯度提升约18.48%,信噪比提升约34.77%,对比度提升约39.41%,对于不均匀遮挡的云雾去除具有较好效果。结论 改进的方法能够去除云雾干扰,有效改善影像数据的视觉效果,同时能够保留大量的细节信息,较传统方法更优。  相似文献   

13.
传统的配准方法假定两幅图像之间的几何变形可以用一个统一的变换模型来描述,高分辨率遥感图像配准,尤其当图像的分辨率达到米级和亚米级时,地物高程因素产生的像点位移不容忽略,导致这些区域的变形与平坦区域不一致,难以找到一个统一的变换模型来描述整幅图像的变形。针对高分辨率图像配准中存在的实际问题,提出了一种基于多模型表示的配准方法。在初配准阶段,完成图像中大部分平坦区域的校正,建立整体模型;在精配准阶段,完成局部高程区域的校正,建立局部模型。实验结果表明:该方法是准确有效的。  相似文献   

14.
基于局部特征的遥感图像快速自动配准   总被引:1,自引:0,他引:1       下载免费PDF全文
针对图像处理领域中遥感图像的配准问题,提出一种基于图像局部特征的快速、自动配准方法。该方法选取具有良好尺度、旋转不变性以及精确特征点定位能力的SIFT局部特征,使用其特征向量间的欧氏距离作为相似性度量进行特征点匹配,并依据仿射变换误差准则去除奇异匹配特征点对,采用仿射变换的几何模型,实现了遥感图像的快速自动配准。实验结果表明,方法是高效、精确以及稳定的。  相似文献   

15.
针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合并过程中,基于对象间的异质性和对象内部的同质性,结合光谱、纹理和形状特征,对对象进行合并;通过调整全局分割参数来调整合并尺度,得到最终的影像分割结果。实验结果表明,所提方法能得到较好的影像分割效果。  相似文献   

16.
王兴武    雷涛    王营博    耿新哲    张月   《智能系统学报》2022,17(6):1123-1133
在遥感影像语义分割任务中,数字表面模型可以为光谱数据生成对应的几何表示,能够有效提升语义分割的精度。然而,大部分现有工作仅简单地将光谱特征和高程特征在不同的阶段相加或合并,忽略了多模态数据之间的相关性与互补性,导致网络对某些复杂地物无法准确分割。本文基于互补特征学习的多模态数据语义分割网络进行研究。该网络采用多核最大均值距离作为互补约束,提取两种模态特征之间的相似特征与互补特征。在解码之前互相借用互补特征,增强网络共享特征的能力。在国际摄影测量及遥感探测学会 (international society for photogrammetry and remote sensing, ISPRS)的Potsdam与Vaihingen公开数据集上验证所提出的网络,证明了该网络可以实现更高的分割精度。  相似文献   

17.
提出了一种新型全自动稳健的遥感图像配准算法。首先,在图像二维平面空间和尺度空间中同时检测局部极值作为特征点,并在特征点邻域提取局部不变特征描述子一尺度不变特征变换(SIFT)。然后,利用距离测度进行SIFT特征匹配得到初步的匹配集合。最后,运用稳健的随机采样一致性(RANSAC)算法将匹配点集划分为内点和外点,在内点域上精确地估计出图像变换模型。实验利用仿真数据测试了SIFT特征的可重复性和可匹配性,利用卫星图像验证了该自动配准算法的有效性和稳健性。  相似文献   

18.
局部相位相关用于图像亚像素级配准技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于局部相位相关的高效和鲁棒的亚像素级图像配准方法。通过传统的相位相关算法估计出初始平移参数后,在初始位置的引导下对互相关功率谱进行上采样矩阵Fourier变换,实现了图像局部相位相关,得到图像间亚像素级平移参数。实验结果表明,算法配准精度较高,且对随机噪声和光照变化具有较强的鲁棒性。  相似文献   

19.
Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints at different times or by different sensors. It is an important image processing procedure in remote sensing and has been studied by remote sensing image processing professionals for several decades. Nevertheless, it is still difficult to find an accurate, robust, and automatic image registration method, and most existing image registration methods are designed for a particular application. High-resolution remote sensing images have made it more convenient for professionals to study the Earth; however, they also create new challenges when traditional processing methods are used. In terms of image registration, a number of problems exist in the registration of high-resolution images: (1) the increased relief displacements, introduced by increasing the spatial resolution and lowering the altitude of the sensors, cause obvious geometric distortion in local areas where elevation variation exists; (2) precisely locating control points in high-resolution images is not as simple as in moderate-resolution images; (3) a large number of control points are required for a precise registration, which is a tedious and time-consuming process; and (4) high data volume often affects the processing speed in the image registration. Thus, the demand for an image registration approach that can reduce the above problems is growing. This study proposes a new image registration technique, which is based on the combination of feature-based matching (FBM) and area-based matching (ABM). A wavelet-based feature extraction technique and a normalized cross-correlation matching and relaxation-based image matching techniques are employed in this new method. Two pairs of data sets, one pair of IKONOS panchromatic images from different times and the other pair of images consisting of an IKONOS panchromatic image and a QuickBird multispectral image, are used to evaluate the proposed image registration algorithm. The experimental results show that the proposed algorithm can select sufficient control points semi-automatically to reduce the local distortions caused by local height variation, resulting in improved image registration results.  相似文献   

20.
Environmental diversity and net primary productivity (NPP) are powerful indicators of local plant species richness (α-diversity). Remote sensing proxies of environmental diversity, such as spectral heterogeneity and NPP, are often used in modelling species richness variability, usually through regression analysis. As multicollinearity may affect analysis of species diversity, the interdependence of such proxies should be a major concern in their use. However, few attempts have been made to examine the interdependence between spectral heterogeneity and NPP proxies such as the Normalized Difference Vegetation Index (NDVI), in most cases using Ordinary Least Square (OLS) regression or Pearson correlations. We test the possible dependence of Landsat Enhanced Thematic Mapper (ETM+) local spectral heterogeneity versus NDVI using quantile regression and rejecting the main assumption of OLS regression, i.e. the symmetry of model residuals. A second-order polynomial function was fitted to the data and both OLS and quantile regression led to a humped-back relationship between spectral heterogeneity and biomass. Nonetheless while for most of the quantiles the humped-back curve was significant (with a negative and significant quadratic slope), for quantiles higher than 0.90, the parabola opened up until it reached an almost linear shape, showing that, at very low values of biomass, pixels may show high levels of local heterogeneity. Hence, patterns of spectral heterogeneity versus NDVI are possible when considering maximum potential spectral variability. We show that the investigation of all possible subsets within a scatter plot may lead to identification of patterns that remain hidden in OLS regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号