首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a long history of the use of Landsat data in burned land mapping mainly due to certain characteristics of the Landsat imagery including the spatial, spectral, and temporal data resolution, the low cost (Landsat data are now freely available), and the existence of an almost 35-year historical archive (excluding Landsat 1–3). Landsat 8 (Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)) was launched on 11 February 2013 and it captures data in three new bands along with two additional thermal bands. However, is the spectral signal of burned surfaces in satellite remote-sensing data of Landsat series consistent and robust enough to allow the successful application of the techniques developed so far for Landsat 8? In this article, we compare the spectral signal of burned surfaces between Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 OLI sensors using five case studies that correspond to five large fire events in different biophysical environments in Greece, for which both Landsat 7 ETM+ and Landsat 8 OLI data were available. From the comparative analysis using histogram data plots of burned (post-fire image) and vegetated (pre-fire image) areas, spectral signature plots and separability indices of certain land-cover types, estimated using the same sampling areas over both satellite images, a general consistency was observed between the two sensors. Slight differences between the sensors were attributed to differences in the acquisition dates and were related to the type of vegetation rather than the sensors used to record the satellite images. Neither sensor provided improved discrimination over the other.  相似文献   

2.
ABSTRACT

Research on quantifying non-photosynthetic vegetation (NPV) with optical remote-sensing approaches has been focusing on optically distinguishing NPV from green vegetation and bare soil. With a very similar spectral response curve to NPV, dry moss is a significant component in semiarid mixed grasslands and plays a large role in NPV estimation. However, limited attention has been paid to this role. We investigated the potential of optical remote sensing to distinguish NPV biomass in semiarid grasslands characterized by NPV, biological soil crust dominated by moss and lichen, and bare soil. First, hyperspectral spectral indices were examined to determine the most useful spectral wavelength regions for NPV biomass estimation. Second, multispectral red-edge indices and shortwave infrared (SWIR) indices were simulated based on Landsat 8 Operational Land Imager (OLI) and Sentinel-2A MultiSpectral Instrument band reflectance, respectively, to determine the most suitable multispectral indices for NPV estimation. The potential multispectral indices were then applied to Landsat 8 OLI images and Sentinel-2A images acquired in early, middle, peak, and early senescence growing seasons to investigate the potential of satellite images for quantifying NPV biomass. Our results indicated that hyperspectral red-edge indices, modified simple ratio, modified red-edge normalized difference vegetation index (mNDVI705), and normalized difference vegetation index (NDVI705) are better than the SWIR hyperspectral indices, including cellulose absorption index for quantifying NPV biomass. The simulated multispectral red-edge spectral indices (NDVIred-edge and mNDVIred-edge) demonstrate good and comparable performance on quantifying NPV biomass with SWIR multispectral indices (normalized difference index [NDI5 and NDI7] and soil-adjusted corn residue index). Nevertheless, the multispectral indices derived from Landsat 8 OLI and Sentinel-2 images have limited potential for NPV biomass estimation.  相似文献   

3.
Multitemporal archived imagery enables the monitoring of savannah woody cover, for ecological purposes. Compatibility in multitemporal, multiple sensor image data would facilitate the monitoring. The decommissioning of SPOT 5 (Système Pour l’Observation de la Terre 5) left a void in multispectral imagery at the 10 m spatial resolution of its high-resolution geometric (HRG) sensor. The subsequent launch of Sentinel 2 presented an opportunity for data continuity to monitor the savannah woody cover, using equivalent 10 m resolution multispectral instrument (MSI) bands. This study examined the integration potential of Sentinel 2 MSI with the longer archive HRG and Landsat 8 (Land Satellite 8) Operational Land Imager (OLI) imagery, in assessing savannah woody cover. Images of three semi-arid savannah sites acquired on same season dates that excluded herbaceous vegetation from the spectral signature were used: November 2014 (HRG) and December 2015 (MSI, OLI). Using equivalent green (G), red (R), and near infrared (NIR) bands at 10 m (MSI, HRG) and 30 m (OLI) resolution, the woody cover was mapped through subpixel classification. The mapped woody cover was compared for statistical differences using χ2 analysis at 10 m resolution (MSI, HRG) and at a degradation of the MSI and HRG images to the 30 m OLI pixel size. Conversion to top-of-atmosphere reflectance values facilitated inter-sensor correlation of G, R, and NIR reflectance for field sampling sites where woody cover was quantified. Inter-sensor regression functions in G, R, and NIR band MSI and HRG images were developed. The 10 m resolution classifications of woody cover were not statistically different. Due to spatial resolution similarity, SPOT 5 HRG multispectral imagery was established as suitable for integration with equivalent band MSI imagery in mapping the woody cover in a multitemporal analysis. For dense woody cover, Landsat 8 OLI imagery was more suitable for integration with MSI than HRG images due to higher radiometric sensitivity, which can permit monitoring physiology-related woody reflectance.  相似文献   

4.
ABSTRACT

Early detection and mapping of the spatio-temporal distribution of invasive water hyacinth (Eichhornia crassipes) in inland hydrological systems are vital for a number of water resource management-related reasons. Field surveys and current climate change projections (associated with longer dry spells, and shortened rain seasons) have shown that climate change and the rapid spread of aquatic invasive species are increasingly affecting inland surface water availability in semi-arid regions of Southern Africa. It is upon this premise that accurate, reliable, and timely information on the spatio-temporal distribution and configuration of water hyacinth is required in tracing their evolution and propagation in affected areas as well as in potential vulnerable areas. This work, therefore, attempts to test two robust push-broom multispectral sensors: Landsat 8 Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) in identifying, detecting, and mapping the spatial distribution and configuration of invasive water hyacinth in a river system. The results of the study show that water hyacinth in small reservoirs can be mapped with an overall accuracy of 68.44% and 77.56% using Landsat 8 and Sentinel-2 data, respectively. The results further demonstrated the blue, red, red edge (RE) 1, short-wavelength infrared (SWIR)-1, and SWIR-2 of both satellite data sets as the critical and outstanding spectral regions in detecting and mapping water hyacinth from other land-cover types. Overall, the study highlights the unexploited prospects of the new noncommercial multispectral sensors in monitoring invasive species infestation from inland surface waterbodies in semi-arid regions (i.e. smaller reservoirs).  相似文献   

5.
The benthic seabeds and seagrass ecosystems, in particular the vulnerable Posidonia oceanica (PO), are increasingly threatened by climate change and other anthropogenic pressures. Along the 8000 km coastline of Italy, they are often poorly mapped and monitored to properly evaluate their health status. Thus to support these monitoring needs, the improved capabilities of the Landsat 8 Operational Land Imager (OLI) Earth Observation (EO) satellite system were tested for PO mapping by coupling its atmospherically corrected multispectral data with near-synchronous sea truth information. Two different approaches for the necessary atmospheric correction were exploited focusing on the Aerosol Optical Depth (AOD) and adjacency noise effects, which typically occur at land–sea interfaces. The general achievements demonstrated the effectiveness of High Resolution (HR) spectral responses captured by OLI sensor, for monitoring seagrass and sea beds in the optically complex Tyrrhenian shallow waters, with performance level dependent on the type of applied atmospheric pre-processing. The distribution of the PO leaf area index (LAI) on different substrates has been most effectively modelled using on purpose developed spectral indices. They were based on the coastal and blue-green OLI bands, atmospherically corrected using a recently introduced method for AOD retrieval, based on the Short Wave Infrared (SWIR) reflectance. The alternative correction method including a less effective AOD assessment but the removal of adjacency effects has proven its efficacy for improving the thematic discriminability of the seabed types characterized by different PO cover–substrate combinations.  相似文献   

6.
The leaf area index (LAI) is the key biophysical indicator used to assess the condition of rangeland. In this study, we investigated the implications of narrow spectral response, high radiometric resolution (12 bits), and higher signal-to-noise ratio of the Landsat 8 Operational Land Imager (OLI) sensor for the estimation of LAI. The Landsat 8 LAI estimates were compared to that of its predecessors, namely Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (8 bits). Furthermore, we compared the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher for Landsat 8 OLI, where ANN (root mean squared error, RMSE = 0. 13; R2 = 0. 89), LUT (RMSE = 0. 25; R2 = 0. 50), compared to Landsat 7 ETM+, where ANN (RMSE = 0. 35; R2 = 0. 60), LUT (RMSE = 0. 38; R2 = 0. 50). Compared to an empirical approach, the RTM provided higher accuracy. In conclusion, Landsat 8 OLI provides an improvement for the estimation of LAI over Landsat 7 ETM+. This is useful for rangeland monitoring.  相似文献   

7.
The results of a 1990 soil survey of a salinized region in Darab Plain, southern Iran, were combined with soil sampling data taken in 2002 from the same locations and employed as a basis for salinity change detection in the region. New preprocessing of satellite imagery was used, along with statistical analysis of the digital number (DN)?salinity relationship, in order to determine salinization of the area. Removal of outliers on the basis of interfering land uses improved the correlations. Nonlinear regression (NLR) in the form y?=?a +?bx α provided a suitable predictor of salinity (y, dS m?1) for both 1990 and 2002 based on DNs (x). Among the 12 tested methods of salinity classification in this study, the six salinity class method with intervals 0–4, 4–10, 10–32, 32–64, 64–80 and >80 dS m–1 was selected. A series of accuracy assessments through a trial-and-error procedure was the basis of the selection of the best method and led to a final accuracy of 91%. About 42% of the lands located on ‘no saline’ and ‘low salinity’ classes in 1990 had changed to the ‘medium’, ‘very high’ and ‘new agricultural land’ classes in 2002.  相似文献   

8.
Owing to continuing touristic developments in Hurghada, Egypt, several coral reef habitats have suffered major deterioration between 1987 and 2013, either by being bleached or totally lost. Such alterations in coral reef habitats have been well observed in their varying distributions using change detection analysis applied to a Landsat 5 image representing 1987, a Landsat 7 image representing 2000, and a Landsat 8 image representing 2013. Different processing techniques were carried out over the three images, including but not limited to rectification, masking, water column correction, classification, and change detection statistics. The supervised classifications performed over the three scenes show five significant marine-related classes, namely coral, sand subtidal, sand intertidal, macro-algae, and seagrass, in different degrees of abundance. The change detection statistics obtained from the classified scenes of 1987 and 2000 reveal a significant increase in the macro-algae and seagrass classes (93 and 47%, respectively). However, major decreases of 41, 40, and 37% are observed in the sand intertidal, coral, and sand subtidal classes, respectively. On the other hand, the change detection statistics obtained from the classified scenes of 2000 and 2013 revealed increases in sand subtidal and macro-algae classes by 14 and 19%, respectively, while major decreases of 49%, 46% and 74% are observed in the sand intertidal, coral, and seagrass classes, respectively.  相似文献   

9.
Circumboreal Canadian bogs and fens distinguished by differences in soils, hydrology, vegetation and morphological features were classified using combinations of Radarsat-2 synthetic aperture radar (SAR) quad-polarization data and Landsat-8 Operational Land Imager (OLI) spectral response patterns. Separate classifications were conducted using a traditional pixel-based maximum likelihood classifer and a machine learning algorithm following an object-based image analysis (OBIA). This study focused on two wetland classes with extensive coverage in the area (bog and fen). In the pixel-based maximum likelihood classification, accuracy increased from approximately 69% user’s accuracy and 79% producer’s accuracy using Radarsat-2 SAR data alone to approximately 80% user’s accuracy and 87% producer’s accuracy using Landsat-8 OLI data alone. Use of the Radarsat-2 SAR and Landsat-8 OLI data following principal components analysis (PCA) data fusion did not result in higher pixel-based maximum likelihood classification accuracy. In the object-based machine learning classification, higher bog and fen class accuracies were obtained when using Radarsat-2 and Landsat OLI data individually compared to the equivalent pixel-based classification. Subsequently, a PCA-data fusion product outperformed the individual bands of the Radarsat-2 and Landsat-8 imagery in object-based classification. Greater than 90% producer’s accuracy was obtained. The margin of error (MOE) was less than 5% in all classifications reported here. Further research will examine alternative data fusion techniques and the addition of Radarsat-2 SAR interferometric digital elevation model (DEM)-based geomorphometrics in object-based classification of different morphological types of bogs and fens.  相似文献   

10.
Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.  相似文献   

11.
通过 1 992~ 1 998年近七年的新围砂涂土壤盐分和养分的定位观测及研究表明 :随着垦种年数的增加 ,砂涂土壤盐分含量有下降趋势 ,但受到气候、利用方式、地形高低等因素的影响 ,脱盐速度不尽相同 ,脱盐率高的达 80 .2 % ,低的仅 2 7.7% .土壤碱解氮含量有所增加 ,从 1 992年的 34 .7mg/kg增至1 998年的 4 4.7mg/kg ,但仍处于很低的水平 ;有效磷含量有了较大幅度的提高 ,从 1 992年的 4 .3mg/kg增至 1 998年的 8.7mg/kg ;速效钾含量有不同程度下降 ,下降幅度为 9.8~ 51 .5% .  相似文献   

12.
More and more remote sensing data corresponding to various wavelength domains is becoming available. Visible/infrared data were first used for land cover classification. However, radar data are becoming more widely used for hydrological and agricultural applications. This paper discusses the performance, for land cover type discrimination, of an optical image acquisition and a multitemporal radar series. For the majority of land cover types existing within the test site (representative of northern European agricultural areas), both ERS multitemporal SAR and Landsat multispectral visible/infrared classifications lead to good results, with the latter being more robust. For better identification of cultures that are less represented, the complementarity of the two datasets may be exploited using an efficient data fusion algorithm based on the Dempster-Shafer evidence theory. The performance of this combination was verified on two successive vegetation cycles.  相似文献   

13.
ABSTRACT

In Bucharest, new subway tunnels are under construction since 2011. The whole project of extending Bucharest underground infrastructure is due to be finished by 2030. The M-5 artery has been under construction since 2011 and ongoing. In December 2015, dewatering procedures in one of the metro stations caused serious damage to the surface infrastructure above, which subsided and partially collapsed in some locations. This paper relies on multi-temporal interferometry techniques to characterize displacement patterns of the ground surface above M-5 beltway between 2014 and 2018, and presents the capacity of Sentinel-1 satellite imagery to detect potential hazards in urban environments. Two stacks of Synthetic Aperture Radar (SAR) images acquired between October 2014 and October 2018 by the Sentinel-1 A and B satellites on ascending and descending orbits have been processed using the Delft Persistent Scatterer Interferometry algorithm (DePSI). The results indicate atypical acceleration in velocities starting in November 2015, prior to the described events, and manifesting until April 2016, when the ground was completely stabilized. The displacement trends and velocity values in the area of the Eroilor underground station were successfully validated using the ground-based Global Navigation Satellite Systems (GNSS) technique.  相似文献   

14.
The largest artificial Robinia pseudoacacia forests in the Yellow River delta of China have been infected by dieback diseases. Over the past several decades, this has caused a large amount of mortality of Robinia pseudoacacia forests in this area. Timely and accurate information on the health levels of the forests is crucial to improving local ecological and economic conditions. Remote sensing has been demonstrated to be a useful tool to map forest diseases over a large area. In this study, IKONOS and Landsat 8 Operational Land Imager (OLI) sensor data were collected for comparing their capability of accurately mapping health levels of the artificial forests. There were three health levels (i.e. healthy, medium dieback, and severe dieback) based on explicit tree crown symptoms. After the IKONOS and OLI images were preprocessed, both spatial and spectral features were extracted from the IKONOS and OLI imagery, and a maximum likelihood classification method was used to identify and map health levels of Robinia pseudoacacia forests. The experimental results indicate that the IKONOS sensor has greater potential for identifying and mapping forest health levels. Furthermore, texture features, especially texture variance, derived from the IKONOS panchromatic band, contributed greatly to the accuracy of classification results, achieving an overall accuracy (OA) of 96% for the IKONOS sensor and an OA of 88% for the OLI 2, which used both OLI spectral and IKONOS spatial features, compared with an OA of 74% for the OLI sensor alone. Our results indicate that the texture features extracted from high resolution imagery can improve the classification accuracy of health levels of planted forests with a regular spatial pattern. Our experimental results also demonstrate that classification of an image with a spatial resolution similar to, or finer than, tree crown diameter outperforms that of relatively coarse resolution imagery for differentiating living tree crowns and understorey dense green grass.  相似文献   

15.
基于Sentinel-1及 Landsat 8数据的黑河中游农田土壤水分估算   总被引:1,自引:0,他引:1  
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对模型中的植被透过率因子(与植被含水量密切相关)采用3种不同的光学遥感指数——修正的土壤调节植被指数(Modified Soil Adjusted Vegetation Index,MSAVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和归一化水体指数(Normalized Difference Water Index,NDWI)进行参数化估计,用于校正植被层的散射贡献。在此基础上,构造基于SAR观测和Oh模型的代价函数,利用复型洗牌全局优化算法进行土壤水分和地表粗糙度的联合反演。采用Sentinel-1 SAR和Landsat 8多光谱数据在黑河中游开展了反演试验,并利用相应的地面观测数据对结果进行了验证。结果表明反演结果与地面观测具有良好的一致性,其中基于NDWI的植被含水量反演效果最佳,与地面观测比较,土壤水分决定系数(R 2)在0.7以上,均方根误差(RMSE)为0.073 m^ 3/m^ 3;植被含水量R 2大于0.9,RMSE为0.885 kg/m 2,表明该方法能够较准确地估计土壤水分。同时发现植被含水量的估计结果,以及植被透过率的参数化方案对土壤水分的反演精度有一定的影响,在未来的研究中需要进一步探索。  相似文献   

16.
In this article, a method based on UTM called salinity-based soil moisture content (S_SMC) is developed. Since the soil moisture depends on the soil salinity (SS) in semi-arid regions, the S_SMC method employs the SS as an effective and augmented variable in conventional UTM to estimate SMC in these areas. In calibration step, initially, a linear regression model between the land surface temperature (LST), the normalized difference vegetation index (NDVI), and the SS is applied using in situ measurements to assess the influence of the SS in SMC estimation. Then, a non-linearity model is conducted through insertion of more terms in the linear equation and an optimal model of S_SMC is yielded. Moreover, the SS is obtained using a linear model from two selected salinity indices derived from Landsat images and in situ measurements. In estimation step, the LST, NDVI, and the SS are obtained using Landsat data. The S_SMC method is evaluated in the Soil Moisture Active Passive Experiment (SMAPEx)-2 and SMAPEx-3 campaigns in wet and dry conditions, respectively, over two scenes of Landsat images. The results demonstrated that the S_SMC method is appropriate in non-irrigated areas. In these areas, the S_SMC method improves R2 (coefficient of determination) from 22% to 65% in SMAPEx-2 and from 24% to 50% in SMAPEx-3. Moreover, the results have shown that the SMC can be estimated at satellite level with a root mean square error of 0.06 and 0.02 (m3 m?3) in wet and dry condition, respectively. Therefore, the SS is a key parameter to adjust conventional UTM to improve the SMC estimation by the S_SMC method.  相似文献   

17.
Function point analysis is a widely cited method for estimating software project size, which is an important activity of project management. At the beginning stage of planning, the top-down approach can be applied. Having obtained more systems specifications at later stages, the bottom-up approach might also be used to improve the accuracy of the estimation. However, the bottom-up approach is not a conventional way of function point analysis. There was no empirical evidence showing the difference between the fully informed top-down approach and the bottom-up approach. Through the implementation of a function point analysis system in an in-house software development department, this paper compares the results of the two approaches. This comparison study shows that the bottom-up approach does not contribute a significant added value to a fully-informed top-down approach. Therefore, the fully-informed top down approach has been chosen as a method for building a software metric database in the organization. More important, the observations and experience gained from this project may help in-house development organizations to establish their own function point analysis systems.  相似文献   

18.
从第三十五届国际宇航联合会的空同遥感专业小组会议上可以看出,目前空间遥感的现状及未来发展前景。今后空间遥感将从具有单一遥感能力向具有综合遥感能力方面发展,不仅能对陆地,而且对海  相似文献   

19.
ABSTRACT

Citrus orchard planting is a typical land-use change process that can impact terrestrial ecosystem services both locally and globally. Long-term monitoring of citrus orchard dynamics is critical for understanding its change patterns as well as the potential driving factors. Satellite remote-sensing imagery has been a primary data source for this purpose. However, most previous studies with multi-year intervals only captured some, but not all detailed information on citrus orchard expansion. In this study, we developed a framework for mapping annual citrus orchard extent and track its long-term dynamics in Xunwu County, China, using the historical Landsat repository from 1990 to 2016. The results suggested that the average overall accuracy of original annual mapping was 87.73%, and its performance was significantly improved after the temporal filtering approach (91.46%). Several features (e.g. elevation, slope, normalized difference vegetation index) played more important roles in citrus orchard identification. With the achieved annual mapping layers, we found a rapid citrus orchard expansion trend during the study interval (i.e. from 22.18 to 697.21 km2). Moreover, this expansion process was unevenly distributed in time. Spatially, emerging citrus orchards were primarily transformed from forests and croplands and mainly distributed in areas with elevations from 200 to 500 m and slopes range from 5° to 20°. This study demonstrated the potential of mapping citrus orchard dynamics at a higher temporal frequency with remote-sensing time-series, which can contribute to providing reference for sustainable land-use policy.  相似文献   

20.
Producing accurate land-use and land-cover (LULC) mapping is a long-standing challenge using solely optical remote-sensing data, especially in tropical regions due to the presence of clouds. To supplement this, RADARSAT images can be useful in assisting LULC mapping. The fusion of optical and active remote-sensing data is important for accurate LULC mapping because the data from different parts of the spectrum provide complementary information and often lead to increased classification accuracy. Also, the timeliness of using synthetic aperture radar (SAR) fills information gaps during overcast or hazy periods. Therefore, this research designed a refined classification procedure for LULC mapping for tropical regions. Determining the best method for mapping with a specific data source and study area is a major challenge because of the wide range of classification algorithms and methodologies available. In this study, different combinations and the potential of Landsat Operational Land Imager (OLI) and RADARSAT-2 SAR data were evaluated to select the best procedure for LULC classification. Results showed that the best filter for SAR speckle reduction is the 5 × 5 enhanced Lee. Furthermore, image-sharpening algorithms were employed to fuse Landsat multispectral and panchromatic bands and subsequently these algorithms were analysed in detail. The findings also confirmed that Gram–Schmidt (GS) performed better than the other techniques employed. Fused Landsat data and SAR images were then integrated to produce the LULC map. Different classification algorithms were adopted to classify the integrated Landsat and SAR data, and the maximum likelihood classifier (MLC) was considered the best approach. Finally, a suitable classification procedure was designed and proposed for LULC as mapping in tropical regions based on the results obtained. An overall accuracy of 98.62% was achieved from the proposed methodology. The proposed methodology is a useful tool in industry for mapping purposes. Additionally, it is also useful for researchers, who could extend the method for different data sources and regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号