共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(18):3027-3036
ABSTRACTLarge amounts of CO2 and dust particles coming from power plant flue need to be captured and removed before flue is discharged into the air. In present work, absorption of carbon dioxide in aqueous N-methylidiethanolamine (MDEA) solution coupling dust suppression has been studied in an atomization absorption column, with MDEA concentrations ranging from 0.1 to 0.5mol/L, and with atomization frequencies ranging from 50 to 80 HZ. The obtained experimental results show that absorption rate of CO2 in aqueous MDEA solution can be enhanced when the absorption process couples a dust suppression one under the condition of atomization. The reason for it is attributed to the adsorption of droplets on the solid particles which restrains the amount of entrainment and makes more droplets contact with gas so as to increase effective mass transfer area, thus resulting in the increase of CO2 absorption rate. The range of obtained enhancement factor is from 1.1 to 1.7. Mass transfer enhancement factor increases with the increase of MDEA concentration and atomization frequency at a certain range. Effective mass transfer areas and entrainment ratios suppressed have been calculated based on theoretic research. The results calculated agree with our experimental phenomena, and support the enhancement mass transfer mechanism proposed. 相似文献
2.
《国际智能与纳米材料杂志》2013,4(1):55-61
A series of SK-activated carbons were prepared by carbonising soya beans in the presence of KOH as activation agent. Different activation temperatures were applied to study the influence of preparation conditions on the surface properties of the carbons and their CO2 adsorption capacity. It was found that the CO2 adsorption capacity is directly related to the nature of surface basic N-containing groups and that the highest CO2 adsorption capacity value was 4.24 mmol/g under 25°C and 1 atm. 相似文献
3.
Huichao ChenChangsui Zhao Lunbo DuanCai Liang Dejian LiuXiaoping Chen 《Fuel Processing Technology》2011,92(3):493-499
The calcination/carbonation loop of calcium-based (Ca-based) sorbents is considered as a viable technique for CO2 capture from combustion gases. Recent attempts to improve the CO2 uptake of Ca-based sorbents by adding calcium lignosulfonate (CLS) with hydration have succeeded in enhancing its effectiveness. The optimum mass ratio of CLS/CaO is 0.5 wt.%. The reduction in particle size and grain size of CaO appeared to be parts of the reasons for increase in CO2 capture. The primary cause of increase in reactivity of the modified sorbents was the ability of the CLS to retard the sintering rate and thus to remain surface area and pore volume for reaction. The CO2 uptake of the modified sorbents was also enhanced by elevating the carbonation pressure. Experimental results indicate that the optimal reaction condition of the modified sorbents is at 0.5 MPa and 700 °C and a high conversion of 0.7 is achieved after 10 cycles, by 30% higher than that of original limestone, at the same condition. 相似文献
4.
Wei Xing Chao Liu Ziyan Zhou Jin Zhou Guiqiang Wang Shuping Zhuo Qingzhong Xue Linhua Song Zifeng Yan 《Nanoscale research letters》2014,9(1):189
A series of carbide-derived carbons (CDCs) with different surface oxygen contents were prepared from TiC powder by chlorination and followed by HNO3 oxidation. The CDCs were characterized systematically by a variety of means such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultimate analysis, energy dispersive spectroscopy, N2 adsorption, and transmission electron microscopy. CO2 adsorption measurements showed that the oxidation process led to an increase in CO2 adsorption capacity of the porous carbons. Structural characterizations indicated that the adsorbability of the CDCs is not directly associated with its microporosity and specific surface area. As evidenced by elemental analysis, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy, the adsorbability of the CDCs has a linear correlation with their surface oxygen content. The adsorption mechanism was studied using quantum chemical calculation. It is found that the introduction of O atoms into the carbon surface facilitates the hydrogen bonding interactions between the carbon surface and CO2 molecules. This new finding demonstrated that not only the basic N-containing groups but also the acidic O-containing groups can enhance the CO2 adsorbability of porous carbon, thus providing a new approach to design porous materials with superior CO2 adsorption capacity. 相似文献
5.
介绍该公司利用活化MDEA脱碳技术对苯菲尔脱碳系统进行改造的情况,改造后装置运行表明,活化MDEA脱碳技术具有蒸汽,电、溶剂消耗低,净化度高,液液稳定等优点。 相似文献
6.
Processes based upon solid sorbents are currently under consideration for post-combustion CO2 capture. Twenty-four different sorbent materials were examined on a laboratory scale in a cyclic temperature swing adsorption/regeneration CO2 capture process in simulated coal combustion flue gas. Ten of these materials exhibited significantly lower theoretical regeneration energies compared to the benchmark aqueous monoethanolamine, supporting the hypothesis that CO2 capture processes based upon solids may provide cost benefits over solvent-based processes. The best performing materials were tested on actual coal-fired flue gas. The supported amines exhibited the highest working CO2 capacities, although they can become poisoned by the presence of SO2. The carbon-based materials showed excellent stability but were generally categorized as having low CO2 capacities. The zeolites worked well under dry conditions, but were quickly poisoned by the presence of moisture. Although no one type of material is without concerns, several of the materials tested have theoretical regeneration energies significantly lower than that of the industry benchmark, warranting further development research. 相似文献
7.
CO2 capture by adsorption with nitrogen enriched carbons 总被引:2,自引:0,他引:2
M.G. Plaza 《Fuel》2007,86(14):2204-2212
The success of CO2 capture with solid sorbents is dependent on the development of a low cost sorbent with high CO2 selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO2 capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO2 physisorption, thus decreasing the capacity of raw carbon at room temperature. 相似文献
8.
Nestor RodríguezSergio Mussati Nicolas Scenna 《Chemical Engineering Research and Design》2011,89(9):1763-1773
This paper presents optimal operating conditions for the post-combustion CO2 capture process utilizing aqueous amine solutions obtained using a process simulator (HYSYS). Three alkanolamine solutions (Methyldiethanolamine MDEA, DiEthanolAmine DEA and MDEA-DEA mixture) are considered to study the performance of the capture process.The design problem addressed in this paper requires specifying the optimal operating conditions (inlet and outlet temperature of the lean solution stream on the absorber, CO2 loading, amine composition and flow rates, among others) to achieve the given CO2 emission targets at a minimum total annual cost. A detailed objective function including total operating costs and investment is considered.The influence of the variation of CO2 reduction targets and the mixing proportion of amines on the total annual cost is analyzed in detail. Numerical results are presented and discussed using different case studies.The results demonstrate that process simulators can be used as a powerful tool not only to simulate but also to optimize the most important design parameters of the post-combustion CO2 capture process. 相似文献
9.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included. 相似文献
10.
Shuangchen Ma Huihui SongMengxuan Wang Jiehong YangBin Zang 《Chemical Engineering Research and Design》2013
As CO2 is the major greenhouse gas, reducing its emission has become an attentive problem in the whole world. It is very important to develop CO2 capture technology for coal-fired power plants. Using ammonia solution to absorb CO2 from the flue gas, which is expected to have advantages of low cost, high efficiency and high absorption load, has become an emerging, hot research area in recent years. However, this technology faces a troublesome problem of ammonia escape. This paper analyzes the mechanism of escaping ammonia; it is also shown the main existing methods to control the escape of ammonia. By comparison, it is concluded that controlling the source of ammonia is feasible. It is also shown that adding some organic additives can inhibit the escape of ammonia and enhance the CO2 removal to some extent at the same time. 相似文献
11.
David Grainger 《Fuel》2008,87(1):14-24
Published data for an operating power plant, the ELCOGAS 315 MWe Puertollano plant, has been used as a basis for the simulation of an integrated gasification combined cycle process with CO2 capture. This incorporated a fixed site carrier polyvinylamine membrane to separate the CO2 from a CO-shifted syngas stream. It appears that the modified process, using a sour shift catalyst prior to sulphur removal, could achieve greater than 85% CO2 recovery at 95 vol% purity. The efficiency penalty for such a process would be approximately 10% points, including CO2 compression. A modified plant with CO2 capture and compression was calculated to cost €2320/kW, producing electricity at a cost of 7.6 € cents/kWh and a CO2 avoidance cost of about €40/tonne CO2. 相似文献
12.
13.
A wire-mesh reactor capable of heating samples at a given heating-rate (1—1000 K8226;s-1) was used to investigate the effect of heating-rate on Ca-based absorbent performance of CO2 capture.BET method was used to analyze the morphology of the produced CaO, and the capabilities of the absorbent were compared.It was found that CaO calcined at a higher heating-rate had more appropriate pore distribution for CO2 capture, and the capability of CaO calcined at 1000 K8226;s-1 was 15% higher than that calcined at 1 K8226;s-1 determined by TGA. 相似文献
14.
Vasilije Manovic 《Fuel》2011,90(1):233-239
CaO-based pellets supported with aluminate cements show superior performance in carbonation/calcination cycles for high-temperature CO2 capture. However, like other CaO-based sorbents, their CO2 carrying activity is reduced after increasing numbers of cycles under high-temperature, high-CO2 concentration conditions. In this work the feasibility of their reactivation by steam or water and remaking (reshaping) was investigated. The pellets, prepared from three limestones, Cadomin and Havelock (Canada) and Katowice (Poland, Upper Silesia), were tested in a thermogravimetric analyzer (TGA). The cycles were performed under realistic CO2 capture conditions, which included calcination in 100% CO2 at temperatures up to 950 °C. Typically, after 30 cycles, samples were hydrated for 5 min with saturated steam at 100 °C in a laboratory steam reactor (SR). Moreover, larger amounts of pellets were cycled in a tube furnace (TF), hydrated with water and reshaped, and tested to determine their CO2 capture activity in the TGA. It was found that, after the hydration stage, pellets recovered their activity, and more interestingly, pellets that had experienced a longer series of cycles responded more favorably to reactivation. Moreover, it was found that conversion of pellets increased after about 70 cycles (23%), reaching 33% by about cycle 210, with no reactivation step. Scanning electron microscope (SEM) analyses showed that the morphology of the low-porosity shell formed at the pellet surface during cycles, which limits conversion, was eliminated after a short period (5 min) of steam hydration. The nitrogen physisorption analyses (BET, BJH) of reshaped spent pellets from cycles in the TF confirmed that sorbent surface area and pore size distribution were similar to those of the original pellets. The main alumina compound in remade pellets as determined by XRD was mayenite (Ca12Al14O33). These results showed that, with periodic hydration/remaking steps, pellets can be used for extended times in CO2 looping cycles, regardless of capture/regeneration conditions. 相似文献
15.
In the CO2 capture process from coal-derived flue gas where amine solvents are used, the flue gas can entrain small liquid droplets into the gas stream leading to emission of the amine solvent. The entrained drops, or mist, will lead to high solvent losses and cause decreased CO2 capture performance. In order to reduce the emissions of the fine amine droplets from CO2 absorber, a novel method using charged colloidal gas aphron (CGA) generated by an anionic surfactant was developed. The CGA absorption process for MEA emission reduction was optimized by investigating the surfactant concentration, stirring speed of the CGA generator, and capture temperature. The results show a significant reduction of MEA emissions of over 50% in the flue gas stream exiting the absorber column of a pilot scale CO2 capture unit. 相似文献
16.
C.F. Martín 《Fuel》2011,90(5):2064-556
Different types of phenolic resins were used as precursor materials to prepare adsorbents for the separation of CO2 in pre-combustion processes. In order to obtain highly microporous carbons with suitable characteristics for the separation of CO2 and H2 under high pressure conditions, phenol-formaldehyde resins were synthesised under different conditions. Resol resins were obtained by using an alkaline environment while Novolac resins were synthesised in the presence of acid catalysts. In addition, two organic additives, ethylene glycol (E) and polyethylene glycol (PE) were included in the synthesis. The phenolic resins thus prepared were carbonised at different temperatures and then physically activated with CO2. The carbons produced were characterised in terms of texture, chemical composition and surface chemistry. Maximum CO2 adsorption capacities at atmospheric pressure were determined in a thermogravimetric analyser. Values of up to 10.8 wt.% were achieved. The high-pressure adsorption of CO2 at room temperature was determined in a high-pressure magnetic suspension balance. The carbons tested showed enhanced CO2 uptakes at high pressures (up to 44.7 wt.% at 25 bar). In addition, it was confirmed that capture capacities depend highly on the microporosity of the samples, the narrow micropores (pore widths of less than 0.7 nm) being the most active in CO2 adsorption at atmospheric pressure. The results presented in this work suggest that phenol-formaldehyde resin-derived activated carbons, particularly those prepared with the addition of ethylene glycol, show great potential as adsorbents for pre-combustion CO2 capture. 相似文献
17.
《分离科学与技术》2012,47(5):772-780
In this study, the performance enhancement of CO2 capture and separation by the SiO2 nanoparticles and surfactants is evaluated. The main objectives are to test the dispersion stability of nanofluids (DI water with nanoparticles and surfactants), to quantify the effect of the nanoparticles and surfactants on the CO2 capture and separation performance, and to find the optimum conditions of the nanoparticles and surfactants. It is found that the CO2 capture and separation performances are enhanced up to 13.1% and 7.8% at the nanoparticle concentration of 0.01 vol%, respectively. It is concluded that nanoparticles enhance both CO2 capture and separation rates, while the surfactants enhance the CO2 capture rate but they interrupt the CO2 separation rate. 相似文献
18.
In this work, a mathematical model was developed for the prediction of packed-bed reactor behavior for CaO+CO2 reaction based on the random pore model. A natural limestone and a modified sorbent using acetic acid washing were used for the experiments. The performances of these sorbents were initially determined using a thermogravimeter analyzer. Then, the reaction was accomplished in a packed-bed reactor for obtaining CO2 breakthrough curves and investigation of model predictions. This model was able to successfully predict the effect of process conditions and solid texture on the breakthrough curves of the packed-bed reactor. 相似文献
19.
基于分子设计的原理,开发了一种醇胺分子结构中具有位阻效应的新型活化剂,评价了由新型活化剂和N-甲基二乙醇胺(MDEA)组成的活化脱碳溶液的吸收性能。试验结果表明,与常规烷醇活化剂相比,新型活化脱碳溶液吸收CO2的速度快、吸收容量大、处理能力高;相同条件下,位阻胺活化剂的处理能力比二乙醇胺(DEA)活化剂提高20%左右。 相似文献
20.
Currently several industrial scale IGCC - carbon capture demonstration plants are being planned. Thermodynamic simulations are a useful tool to investigate the optimal plant configuration. In order to demonstrate the potential of the next generation of IGCC with CCS a thermodynamic model was developed using conventional but improved technology. The plant concept was verified and simulated for a generic hard coal and lignite. The simulation showed a net efficiency (LHV) of 38.5% and 41.9% for hard coal and lignite, respectively.The results are consistent with current studies but also indicate that major simulations were too optimistic. The auxiliary demand of an IGCC plant with carbon capture can be expected with 21 to 24% based on gross output. The drop in efficiency compared to the none-capture case is estimated with roughly 11 to 12%-points. During a sensitivity study the impact of process changes on plant efficiency and economics is evaluated. Releasing the captured CO2 without compression is found to be economically favourable at CO2 prices below 15 €/t and electricity prices above 100 €/MWh. Further the impact of carbon capture rate is quantified and an efficiency potential is indicated for lower CO2 quality. 相似文献